

Small Molecules

DAPT

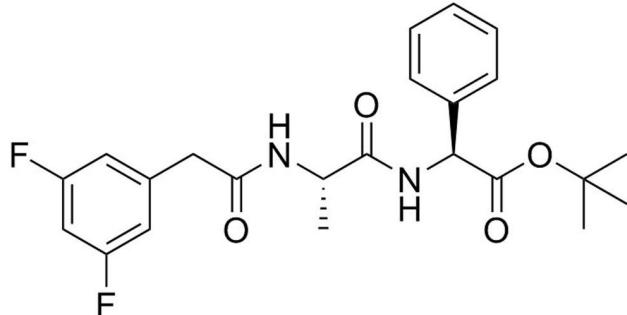
Catalog # 72082

Notch pathway inhibitor; Inhibits γ -secretase

5 mg

Scientists Helping Scientists™ | www.stemcell.com

TOLL FREE PHONE 1 800 667 0322 • PHONE +1 604 877 0713


INFO@STEMCELL.COM • TECHSUPPORT@STEMCELL.COM

FOR GLOBAL CONTACT DETAILS VISIT OUR WEBSITE

Product Description

DAPT is an inhibitor of the γ -secretase complex. Notch is a key target of γ -secretase, therefore DAPT indirectly inhibits the Notch pathway. Other targets of γ -secretase that would be influenced by DAPT include amyloid precursor protein, E-cadherin, and ErbB4 (Dovey et al.).

Molecular Name:	DAPT
Alternative Names:	GSI-IX; LY-374973
CAS Number:	208255-80-5
Chemical Formula:	$C_{23}H_{26}F_2N_2O_4$
Molecular Weight:	432.5 g/mol
Purity:	$\geq 95\%$
Chemical Name:	N-[2S-(3,5-difluorophenyl)acetyl]-L-alanyl-2-phenyl-1,1-dimethylethyl ester-glycine
Structure:	

Properties

Physical Appearance:	A crystalline solid
Storage:	Product stable at -20°C as supplied. Protect from prolonged exposure to light. For product expiry date, please contact techsupport@stemcell.com .
Solubility:	<ul style="list-style-type: none">· Absolute ethanol ≤ 2.3 mM· DMSO ≤ 55 mM <p>For example, to prepare a 10 mM stock solution in DMSO, resuspend 5 mg in 1.16 mL of DMSO.</p>

Prepare stock solution fresh before use. Information regarding stability of small molecules in solution has rarely been reported, however, as a general guide we recommend storage in DMSO at -20°C. Aliquot into working volumes to avoid repeated freeze-thaw cycles. The effect of storage of stock solution on compound performance should be tested for each application.

Compound has low solubility in aqueous media. For use as a cell culture supplement, stock solution should be diluted into culture medium immediately before use. Avoid final DMSO concentration above 0.1% due to potential cell toxicity.

Published Applications

MAINTENANCE AND SELF-RENEWAL

- Reduces colony-forming efficiency of mouse neural stem cells (Androutsellis-Theotokis et al.).
- Enhances radiation-induced cell death of glioma stem cells (Wang et al.).

DIFFERENTIATION

- Promotes differentiation of nociceptors from human pluripotent stem cells, in combination with several other small molecules (Chambers et al.).
- Promotes differentiation of neurons from human and mouse embryonic stem (ES) cells (Crawford and Roelink; Elkabetz et al.).
- Promotes differentiation of retinal pigment epithelium from mouse ES cells (Osakada et al.).
- Promotes differentiation of pancreatic cells from human pluripotent stem cells (D'Amour et al.).

CANCER RESEARCH

- Reduces mammosphere-forming efficiency of breast cancer cell lines and ductal carcinoma *in situ* cells (Farnie et al.; Harrison et al.).

References

Androutsellis-Theotokis A et al. (2006) Notch signalling regulates stem cell numbers *in vitro* and *in vivo*. *Nature* 442(7104): 823–6.

Chambers SM et al. (2012) Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. *Nature Biotechnology* 30(7): 715–20.

Crawford TQ & Roelink H. (2007) The notch response inhibitor DAPT enhances neuronal differentiation in embryonic stem cell-derived embryoid bodies independently of sonic hedgehog signaling. *Developmental Dynamics*: 236(3): 886–92.

D'Amour KA et al. (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. *Nature Biotechnology* 24(11): 1392–401.

Dovey HF et al. (2001) Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. *Journal of Neurochemistry* 76(1): 173–81.

Elkabetz Y et al. (2008) Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. *Genes & Development* 22(2): 152–65.

Farnie G et al. (2007) Novel cell culture technique for primary ductal carcinoma *in situ*: role of Notch and epidermal growth factor receptor signaling pathways. *Journal of the National Cancer Institute* 99(8): 616–27.

Harrison H et al. (2010) Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. *Cancer Research* 70(2): 709–18.

Osakada F et al. (2009) Stepwise differentiation of pluripotent stem cells into retinal cells. *Nature Protocols* 4(6): 811–24.

Wang J et al. (2010) Notch promotes radioresistance of glioma stem cells. *Stem Cells* 28(1): 17–28.

Related Small Molecules

For a complete list of small molecules available from STEMCELL Technologies, please visit our website at www.stemcell.com/smallmolecules or contact us at techsupport@stemcell.com.

STEMCELL TECHNOLOGIES INC.'S QUALITY MANAGEMENT SYSTEM IS CERTIFIED TO ISO 13485. PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED.

Copyright © 2015 by STEMCELL Technologies Inc. All rights reserved including graphics and images. STEMCELL Technologies & Design, STEMCELL Shield Design and Scientists Helping Scientists are trademarks of STEMCELL Technologies Inc. While STEMCELL has made all reasonable efforts to ensure that the information provided by STEMCELL and its suppliers is correct, it makes no warranties or representations as to the accuracy or completeness of such information.