LY364947 # **Small Molecules** Activin/BMP/TGF-β pathway inhibitor; **Inhibits ALK5** Catalog # 72592 5 mg Scientists Helping Scientists™ | www.stemcell.com TOLL FREE PHONE 1 800 667 0322 • PHONE +1 604 877 0713 INFO@STEMCELL.COM • TECHSUPPORT@STEMCELL.COM FOR GLOBAL CONTACT DETAILS VISIT OUR WEBSITE ## **Product Description** LY364947 is a selective inhibitor of Activin/NODAL/TGF-β pathway that inhibits ALK5 (Sawyer et al.). Transforming growth factor-beta (TGF-β) superfamily ligands signal through a cell surface heteromeric complex involving type I (TGFβRI) and type II (TGFβRII) receptors. Downstream signal transduction is mediated by the TGFβRI kinase domain through the phosphorylation of SMAD proteins. LY364947 is a selective inhibitor of the TGFβRI ALK5 (IC₅₀ = 59 nM; Sawyer et al.). LY364947 less effectively inhibits TGFβRII (IC₅₀ = 400 nM), p38 MAPK ($IC_{50} = 740$ nM), and mixed lineage kinase-7 (MLK-7; $IC_{50} = 1,400$ nM; Li et al. 2006; Sawyer et al.). Molecular Name: LY364947 Alternative Names: E-616451; HTS 466284; TGF-β RI Kinase Inhibitor CAS Number: 396129-53-6 Chemical Formula: $C_{17}H_{12}N_4$ Molecular Weight: 272.3 g/mol Purity: ≥ 98% Chemical Name: 4-(3-Pyridin-2-yl)(1H)-pyrazol-4-yl quinoline Structure: ### **Properties** Physical Appearance: A crystalline solid Storage: Product stable at -20°C as supplied. Protect from prolonged exposure to light. Stable as supplied for 12 months from date of receipt. Solubility: · DMSO ≤ 3.6 mM For example, to prepare a 1 mM stock solution in DMSO, resuspend 1 mg in 3.67 mL of fresh DMSO. Prepare stock solution fresh before use. Information regarding stability of small molecules in solution has rarely been reported, however, as a general guide we recommend storage in DMSO at -20°C. Aliquot into working volumes to avoid repeated freeze-thaw cycles. The effect of storage of stock solution on compound performance should be tested for each application. Compound has low solubility in aqueous media. For use as a cell culture supplement, stock solution should be diluted into culture medium immediately before use. Avoid final DMSO concentration above 0.1% due to potential cell toxicity. ## Small Molecules LY364947 ### **Published Applications** #### REPROGRAMMING · In combination with Valproic Acid (Catalog #72292), can replace SOX2 in reprogramming of mouse embryonic fibroblasts transduced with OCT4, KLF4 and c-MYC (Ichida et al.). #### **DIFFERENTIATION** - · Blocks chondrogenesis induced by mechanical load in human mesenchymal stem cells (Li et al. 2010). - · Restores the hematopoietic potential of mouse para-aortic splanchnopleural cells deficient for the Evi-1 transcription factor (Sato et al.). - · Impairs definitive endoderm differentiation competence in human embryonic stem (ES) cells (Jaremko et al.). - · Blocks TGF-β-induced endothelial-to-mesenchymal transition of NMuMg mammary epithelial cells or mouse ES cell-derived endothelial cells (Peng et al.; Kokudo et al.). #### **CANCER RESEARCH** - · Suppresses colony-forming ability of mouse and human leukemia-initiating cells cultured with OP-9 stromal cells, and, when combined with Imatinib (Catalog #72532), reduces lethality in a mouse model of chronic myeloid leukemia (Naka et al.). - · Reduces invasiveness of MDA-MB-231 breast cancer cells in a Matrigel invasion assay (Shiou et al.). ### References Ichida JK et al. (2009) A small-molecule inhibitor of TGF-beta signaling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell 5(5): 491–503. Jaremko KL & Marikawa Y. (2013) Regulation of developmental competence and commitment towards the definitive endoderm lineage in human embryonic stem cells. Stem Cell Res 10(3): 489–502. Kokudo T et al. (2008) Snail is required for TGFbeta-induced endothelial-mesenchymal transition of embryonic stem cell-derived endothelial cells. J Cell Sci 121(20): 3317–24. Li H et al. (2006) Dihydropyrrolopyrazole transforming growth factor-beta type I receptor kinase domain inhibitors: a novel benzimidazole series with selectivity versus transforming growth factor-beta type II receptor kinase and mixed lineage kinase-7. J Med Chem 49(6): 2138–42. Li Z et al. (2010) Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-beta pathway. J Cell Mol Med 14(6A): 1338–46. Naka K et al. (2010) TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463(7281): 676–80. Peng S-B et al. (2005) Kinetic characterization of novel pyrazole TGF-beta receptor I kinase inhibitors and their blockade of the epithelial-mesenchymal transition. Biochemistry 44(7): 2293–304. Sato T et al. (2008) Evi-1 promotes para-aortic splanchnopleural hematopoiesis through up-regulation of GATA-2 and repression of TGF-b signaling. Cancer Sci 99(7): 1407–13. Sawyer JS et al. (2003) Synthesis and activity of new aryl- and heteroaryl-substituted pyrazole inhibitors of the transforming growth factor-\$\beta\$ type I receptor kinase domain. J Med Chem 46(19): 3953–6. Shiou S-R et al. (2006) Smad4-dependent regulation of urokinase plasminogen activator secretion and RNA stability associated with invasiveness by autocrine and paracrine transforming growth factor-beta. J Biol Chem 281(45): 33971–81. ### Related Small Molecules For a complete list of small molecules available from STEMCELL Technologies, visit www.stemcell.com/smallmolecules or contact us at techsupport@stemcell.com. ## This product is hazardous. Please refer to the Safety Data Sheet (SDS). STEMCELL TECHNOLOGIES INC.'S QUALITY MANAGEMENT SYSTEM IS CERTIFIED TO ISO 13485. PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED. Copyright © 2017 by STEMCELL Technologies Inc. All rights reserved including graphics and images. STEMCELL Technologies & Design, STEMCELL Shield Design, and Scientists Helping Scientists are trademarks of STEMCELL Technologies Canada Inc. All other trademarks are the property of their respective holders. While STEMCELL has made all reasonable efforts to ensure that the information provided by STEMCELL and its suppliers is correct, it makes no warranties or representations as to the accuracy or completeness of such information.