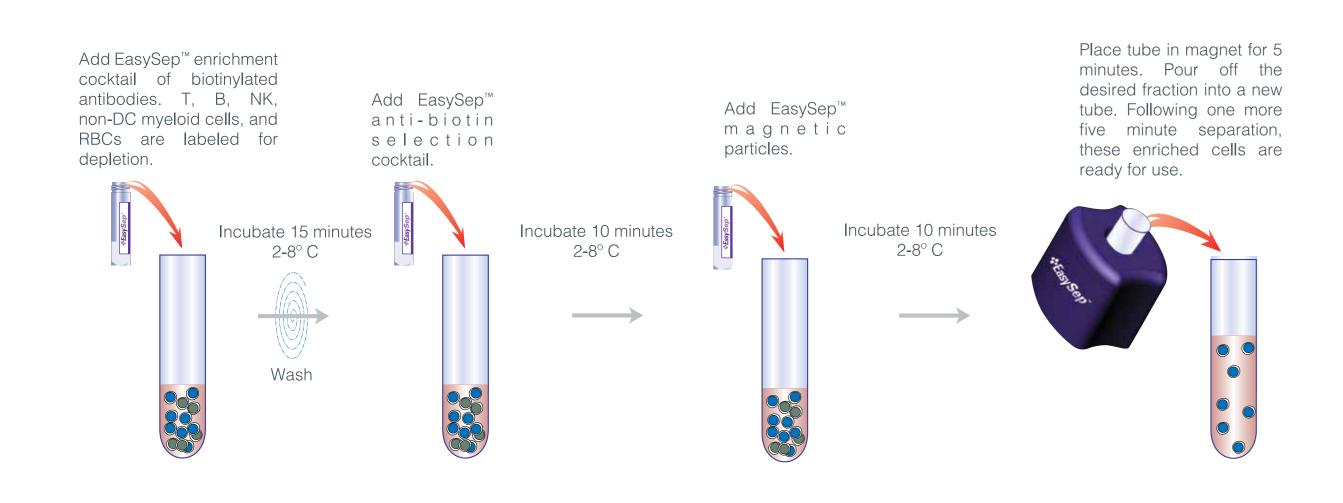
# A Simple and Fast Method for the Isolation of Untouched Mouse Pan Dendritic Cells

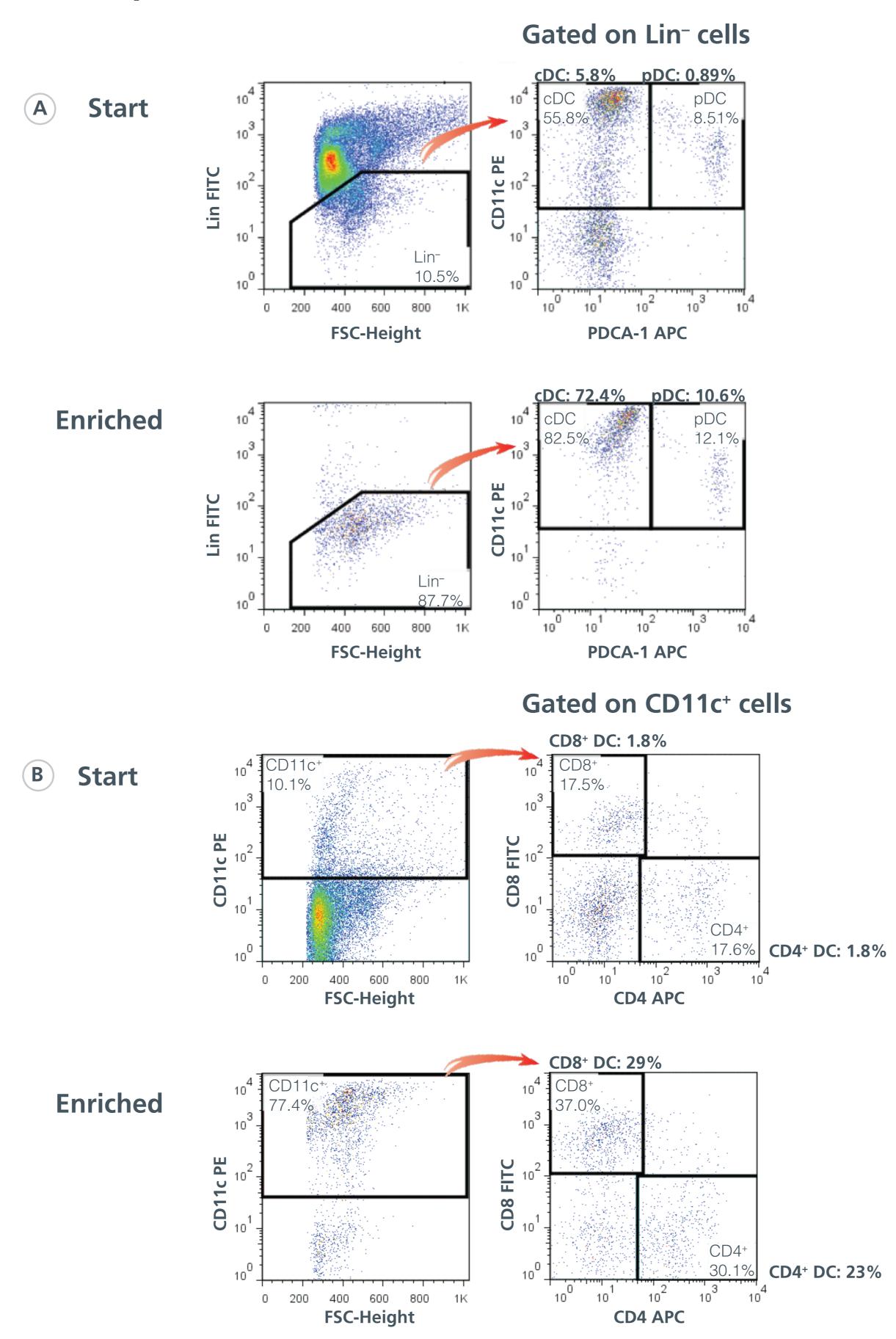
Nooshin Tabatabaei-Zavareh, Wendy Luong, Maureen A. Fairhurst, and Terry E. Thomas


STEMCELL Technologies Inc., Vancouver, BC, Canada

### Introduction

Dendritic cells (DC) are specialized antigen presenting cells that activate T cells while preserving self-tolerance. DC are heterogenous and various functions have been ascribed to various subsets of DC. Two major DC subsets have been described in steady-state mouse spleen: conventional DCs (cDC) and plasmocytoid DCs (pDC). Both subsets express CD11c though pDC exhibit intermediate levels of CD11c. pDC are characterized by the expression of a specific marker, PDCA-1. cDC can be further divided into two CD8+ and CD8- (of which majority are CD4+) subsets. Purifying DC is essential for study of their development and function but is often difficult due to the low numbers of DC. Typically, elaborate purification protocols such as FACS-based cell sorting or expansion in culture are needed to obtain enough DC for subsequent studies. Here, we describe an immunomagnetic, column-free negative selection method to isolate all DC subsets (panDC) from mouse spleen (EasySep™). Using this method, non-DC are labeled for magnetic depletion, while DC remain untouched. The whole selection is performed in approximately 50 minutes and can also be automated using RoboSep™. Upon enrichment, the panDC purities of  $77 \pm 9$  (n=8) with a yield of 8.3 x 10<sup>5</sup> cells per spleen are achieved (Table 1). Both CD8<sup>+</sup> and CD4<sup>+</sup> DC can be identified in the enriched cDC fraction. Enriched DC upregulate costimulatory and MHC class II molecules upon stimulation with LPS. In addition, they are capable of stimulating T-cell proliferation in a mixed leukocyte reaction (MLR).

### Methods


## FIGURE 1: EasySep<sup>™</sup> procedure for column-free enrichment of panDC



The EasySep™ mouse DC negative selection kit is designed to enrich DC from mouse spleen. Briefly, spleens were digested with spleen dissociation medium containing collagenase and DNAse (STEMCELL Technologies, Catalog #07915). Single cell suspensions were prepared at a concentration of 1 x 10<sup>8</sup> cells/ml in PBS + 2% FBS and 1 mM EDTA. To inhibit Fc receptor-mediated labeling, FcR blocker was added to the cell suspension before adding EasySep™ enrichment cocktail.

## Results

#### FIGURE 2: FACS profiles before and after enrichment of DC using EasySep™



A. Lin<sup>-</sup> (CD3, CD19, NK1.1, Ter119, Ly-6G, F4/80) cells are gated (left panels). Conventional DC (cDC) are analysed as Lin<sup>-</sup>CD11c<sup>+</sup>PDCA-1<sup>-</sup>, whereas plasmocytoid DC are Lin<sup>-</sup>CD11c<sup>int</sup>PDCA-1<sup>+</sup> (right panels). Total DC (cDC + pDC) purity increases from 6.7% to 83% after enrichment in this experiment. B. CD11c<sup>+</sup>CD8<sup>+</sup>DC as well as CD11c<sup>+</sup>CD8<sup>-</sup>CD4<sup>+</sup> DC are preserved in the final purified fraction (bottom panels). Frequency of target cells is calculated from total viable cells and shown outside the plots on the right.

# FIGURE 3: Expression of MHC class II and costimulatory molecules on EasySep™ enriched DC upon stimulation with LPS




MHC class II, CD86, and CD40 expression was assessed on EasySep™ enriched DC using flow cytometry. Analysis was performed immediately after isolation (red histograms) or after overnight culture with 1 ug/ml LPS (Blue histograms). For the histogram analysis, viable CD11c⁺ cells are gated.

TABLE 1: Purity and cell yield of mouse panDC following negative selection using EasySep™ and RoboSep™

|             |   | Start       | EasySep™                       |           | RoboSep™ |                                |           |
|-------------|---|-------------|--------------------------------|-----------|----------|--------------------------------|-----------|
| Cell subset | n | % Purity    | Avg total cell<br>yield/spleen | % Purity  | n        | Avg total cell<br>yield/spleen | % Purity  |
| cDC and pDC | 8 | 6.5 ± 1.4   | 8.3 x 10 <sup>5</sup>          | 77 ± 9    | 5        | 6.2 x 10 <sup>5</sup>          | 59 ± 10   |
| pDC         |   | 0.73 ± 0.22 |                                | 7.4 ± 3.2 |          |                                | 5.8 ± 3.9 |

Values expressed as mean ± SD. Purity determined by flow cytometry. Viable cells gated using PI staining (PI negative gate) and scatter profile.

## FIGURE 4: Proliferation of allogeneic CD4<sup>+</sup> T cells in response to EasySep<sup>™</sup> enriched DC in MLR assay



EasySep™ enriched DC:T cell ratio

A representative of 3 experiments has been shown. CD4<sup>+</sup> T cells were enriched from Balb/C spleens using mouse CD4<sup>+</sup> T cell enrichment kit (STEMCELL Technologies, Catalog #19752) and labeled with CFSE. 10<sup>5</sup> CFSE-labeled CD4<sup>+</sup> T cells were co-cultured for 4 days with different ratios of EasySep<sup>™</sup> purified DC from C57BL/6 mice. Cell proliferation was determined by measuring CFSE dilution in viable CD4<sup>+</sup>CD3<sup>+</sup> T cells using flow cytometry. Error bars represent standard deviation from mean of triplicate cultures.

#### Conclusions

- Untouched panDC can be enriched in less than 1 hour using EasySep<sup>™</sup> negative selection.
- Procedure can be automated with RoboSep<sup>™</sup>.
- All DC subsets are enriched and purities of 77 ± 9% can be obtained.
- EasySep<sup>™</sup> enriched DC are not activated immediately after isolation but can upregulate activation markers upon appropriate stimulation.
- EasySep<sup>™</sup> isolated DCs are fully functional as evident by allostimulation of CD4<sup>+</sup> T cells in MLR assays.

