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Introduction

Type 1 diabetes is characterized by a loss of the insulin-producing beta cells of the pancreatic islets. Transplanting

FIGURE 4: Gene Expression Profile is Indicative of Consistent Transition of Definitive
Endoderm to Pancreatic Progenitor Cells

cadaveric donor islets into the portal vein of type 1 diabetic individuals can induce insulin independence. However, a
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progenitor cells are loaded into a device and implanted under the skin'2. Maturation of these progenitor cells to functional
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Several protocols have been developed to generate pancreatic progenitors from hES and hiPS cells but with varying
efficiency and reproducibility across cell lines. To standardize generation of hES and hiPS cell-derived pancreatic
progenitors, we developed the serum-free, defined STEMdIiff" Pancreatic Progenitor Kit that supports efficient and
reproducible generation of pancreatic progenitors from multiple hES and hiPS cell lines. Cells generated using this @ 7 Bl HNF4A [ @ PDX-1
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Supplement: ' 1A + 1B ' 1B A + 2B ' 2B ' 3 ' 4 Gene expression profile at the end of each stage of differentiation for key markers of (A) the pluripotent state, (B) definitive endoderm,
Basal: Sltaged1 Baigjg,\jezd}fm (C) primitive gut tube and posterior foregut and (D) pancreatic progenitor cells. Expression was normalized to 18S ribosomal RNA and
Basal Medium
TeSR™ TATA Binding Protein (TBP). Data are the mean + SEM for 3 - 5 experiments. Expression pattern is consistent with published data*.
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FIGURE 5: In Vivo Maturation of Pancreatic Progenitor Cells to Mono-Hormonal Endocrine Cells
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The STEMdIiff™ Pancreatic Progenitor Kit promotes the differentiation of hES and hiPS cells through 4 stages: definitive endoderm (End
Stage 1), primitive gut tube (End Stage 2), posterior foregut endoderm (End Stage 3) and pancreatic progenitors (End Stage 4). The kit

comprises 2 basal media and 6 supplements that are used over the course of 14 days to promote pancreatic progenitor cell formation.

Representative images of cell morphology are shown at the end of each stage of differentiation (Scale bar, 50 um).

FIGURE 2: Efficient Generation of Pancreatic Progenitor Cells Across Multiple Cell Lines
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FIGURE 6: In Vitro Maturation of Pancreatic Progenitor Cells Increases Insulin Gene Expression
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The STEMdIff™ Pancreatic Progenitor Kit promotes highly efficient generation of definitive endoderm (End Stage 1) and pancreatic 1

progenitor cells (End Stage 4). (A) Representative flow cytometry plots for CXCR4 and SOX17 co-expression in differentiated H9 hES 01

cells. Gates are set based on isotype controls. (B) Quantitative data for CXCR4/SOX17 co-expression in two hES and two hiPS cell lines.
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Data are plotted as individual points representing the mean of duplicates within a single experiment. The horizontal line represents the
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mean of all experiments, with error bars indicating the SEM. n = 5-10 per cell line. (C-D) Cells were immediately carried forward from the
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end of Stage 1 into Stages 2 - 4 without passaging, resulting in highly efficient conversion of definitive endoderm cells into

STEMdiff™
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PDX-1*/NKX6.1* pancreatic progenitors at the end of Stage 4. (C) Representative flow cytometry plots for PDX-1 and NKX6.1
co-expression in differentiated H9 hES cells. (D) Quantitative data for PDX-1/NKX6.1 co-expression in two hES and two hiPS cell lines.

Data are plotted as in panel B (n = 5 - 10 per cell ine). The average efficiency of pancreatic progenitor differentiation ranged from 61.5% PDX-1+/NKX6.1* cells generated using the STEMdiff™ Pancreatic Progenitor Kit were subjected to further differentiation by treating end

to 77.7% depending on the cell line. (E) Representative images of PDX-1 (green) and NKX.1 (red) immunoreactivity in pancreatic Stage 4 cultures with Stage 5 and Stage 6 media as described in Rezania et al., Nature Biotechnology, 2014 or Pagliuca et al., Cell, 2014,

progenitor cells at the end of Stage 4 (Scale bar, 100 pm). Nearly all NKX6.1* cells also expressed PDX-1 as Is observed in the Cells were harvested at the end of Stage 1 and at the end of Stage 4 (STEMdiff™ Pancreatic Progenitor Kit) as well as at the end of Stage

developing human pancreas®.

FIGURE 3: Rapid Expansion Yields High Numbers of Pancreatic Progenitor Cells
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5 and Stage 6 following in vitro maturation*®> and analyzed for expression of insulin and glucagon by RT-gPCR. Expression was normalized

to 18S ribosomal RNA and then to undifferentiated cells. Data are the mean = SEM for 3 experiments.

Summary
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(A, B) Undifferentiated hPSCs were seeded at 8 x 10° cells (2.1 x 10° cells/cm?) into wells of a 12-well culture plate containing mTeSR™1 ® Cells generated ueing the STEMdIiff" Pancreatic Progenitor Kit are Capab|e of maturing towards

+ 10 pM Y-27632. Plating efficiency was approximately 50-60%, yielding a nearly confluent monolayer of approximately 4 - 5 x 10° cells mono-hormonal insulin-producing cells following in vivo or in vitro maturation.

per well on Day 1. By the end of Stage 1, there was an approximate 4-fold increase in total cell number, of which >75% are | | | o _ o _
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