Dose-dependent proteomic analysis of glioblastoma cancer stem cells upon treatment with γ-secretase inhibitor.
Notch signaling has been demonstrated to have a central role in glioblastoma (GBM) cancer stem cells (CSCs) and we have demonstrated recently that Notch pathway blockade by γ-secretase inhibitor (GSI) depletes GBM CSCs and prevents tumor propagation both in vitro and in vivo. In order to understand the proteome alterations involved in this transformation,a dose-dependent quantitative mass spectrometry (MS)-based proteomic study has been performed based on the global proteome profiling and a target verification phase where both Immunoassay and a multiple reaction monitoring (MRM) assay are employed. The selection of putative protein candidates for confirmation poses a challenge due to the large number of identifications from the discovery phase. A multilevel filtering strategy together with literature mining is adopted to transmit the most confident candidates along the pipeline. Our results indicate that treating GBM CSCs with GSI induces a phenotype transformation towards non-tumorigenic cells with decreased proliferation and increased differentiation,as well as elevated apoptosis. Suppressed glucose metabolism and attenuated NFR2-mediated oxidative stress response are also suggested from our data,possibly due to their crosstalk with Notch Signaling. Overall,this quantitative proteomic-based dose-dependent work complements our current understanding of the altered signaling events occurring upon the treatment of GSI in GBM CSCs.
View Publication
产品类型:
产品号#:
05751
产品名:
NeuroCult™ NS-A 扩增试剂盒(人)
Walker TL et al. (FEB 2013)
The Journal of neuroscience : the official journal of the Society for Neuroscience 33 7 3010--3024
Prominin-1 Allows Prospective Isolation of Neural Stem Cells from the Adult Murine Hippocampus.
Prominin-1 (CD133) is commonly used to isolate stem and progenitor cells from the developing and adult nervous system and to identify cancer stem cells in brain tumors. However,despite extensive characterization of Prominin-1(+) precursor cells from the adult subventricular zone,no information about the expression of Prominin-1 by precursor cells in the subgranular zone (SGZ) of the adult hippocampus has been available. We show here that Prominin-1 is expressed by a significant number of cells in the SGZ of adult mice in vivo and ex vivo,including postmitotic astrocytes. A small subset of Prominin-1(+) cells coexpressed the nonspecific precursor cell marker Nestin as well as GFAP and Sox2. Upon fluorescence-activated cell sorting,only Prominin-1/Nestin double-positive cells fulfilled the defining stem cell criteria of proliferation,self-renewal,and multipotentiality as assessed by a neurosphere assay. In addition,isolated primary Prominin-1(+) cells preferentially migrated to the neurogenic niche in the SGZ upon transplantation in vivo. Finally,despite its expression by various stem and progenitor cells,Prominin-1 turned out to be dispensable for precursor cell proliferation in vitro and in vivo. Nevertheless,a net decrease in hippocampal neurogenesis,by ∼30% was found in Prominin-1 knock-out mice,suggesting other roles in controlling adult hippocampal neurogenesis. Remarkably,an upregulation of Prominin-2 was detected in Prominin-1-deficient mice highlighting a potential compensatory mechanism,which might explain the lack of severe symptoms in individuals carrying mutations in the Prom1 gene.
View Publication
产品类型:
产品号#:
05701
产品名:
NeuroCult™ 扩增添加物 (小鼠&大鼠)
Choi SA et al. (JAN 2014)
European Journal of Cancer 50 1 137--149
Identification of brain tumour initiating cells using the stem cell marker aldehyde dehydrogenase
Aldehyde dehydrogenase (ALDH) has been identified in stem cells from both normal and cancerous tissues. This study aimed to evaluate the potential of ALDH as a universal brain tumour initiating cell (BTIC) marker applicable to primary brain tumours and their biological role in maintaining stem cell status. Cells from various primary brain tumours (24paediatric and 6 adult brain tumours) were stained with Aldefluor and sorted by flow cytometry. We investigated the impact of ALDH expression on BTIC characteristics in vitro and on tumourigenic potential in vivo. Primary brain tumours showed universal expression of ALDH,with 0.3-28.9% of the cells in various tumours identified as ALDH(+). The proportion of CD133(+) cells within ALDH(+) is higher than ALDH cells. ALDH(+) cells generate neurospheres with high proliferative potential,express neural stem cell markers and differentiate into multiple nervous system lineages. ALDH(+) cells tend to show high expression of induced pluripotent stem cell-related genes. Notably,targeted knockdown of ALDH1 by shRNA interference in BTICs potently disturbed their self-renewing ability. After 3months,ALDH(+) cells gave rise to tumours in 93% of mice whereas ALDH cells did not. The characteristic pathology of mice brain tumours from ALDH(+) cells was similar to that of human brain tumours,and these cells are highly proliferative in vivo. Our data suggest that primary brain tumours contain distinct subpopulations of cells that have high expression levels of ALDH and BTIC characteristics. ALDH might be a potential therapeutic target applicable to primary brain tumours.
View Publication
产品类型:
产品号#:
01700
01705
05750
05752
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 分化试剂盒 (人)
Badja C et al. (DEC 2014)
Stem cells translational medicine 3 12 1467--72
Efficient and cost-effective generation of mature neurons from human induced pluripotent stem cells.
For years,our ability to study pathological changes in neurological diseases has been hampered by the lack of relevant models until the recent groundbreaking work from Yamanaka's group showing that it is feasible to generate induced pluripotent stem cells (iPSCs) from human somatic cells and to redirect the fate of these iPSCs into differentiated cells. In particular,much interest has focused on the ability to differentiate human iPSCs into neuronal progenitors and functional neurons for relevance to a large number of pathologies including mental retardation and behavioral or degenerative syndromes. Current differentiation protocols are time-consuming and generate limited amounts of cells,hindering use on a large scale. We describe a feeder-free method relying on the use of a chemically defined medium that overcomes the need for embryoid body formation and neuronal rosette isolation for neuronal precursors and terminally differentiated neuron production. Four days after induction,expression of markers of the neurectoderm lineage is detectable. Between 4 and 7 days,neuronal precursors can be expanded,frozen,and thawed without loss of proliferation and differentiation capacities or further differentiated. Terminal differentiation into the different subtypes of mature neurons found in the human brain were observed. At 6-35 days after induction,cells express typical voltage-gated and ionotrophic receptors for GABA,glycine,and acetylcholine. This specific and efficient single-step strategy in a chemically defined medium allows the production of mature neurons in 20-40 days with multiple applications,especially for modeling human pathologies.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Matsuoka AJ et al. (MAR 2017)
Stem cells translational medicine 6 3 923--936
Directed Differentiation of Human Embryonic Stem Cells Toward Placode-Derived Spiral Ganglion-Like Sensory Neurons.
The ability to generate spiral ganglion neurons (SGNs) from stem cells is a necessary prerequisite for development of cell-replacement therapies for sensorineural hearing loss. We present a protocol that directs human embryonic stem cells (hESCs) toward a purified population of otic neuronal progenitors (ONPs) and SGN-like cells. Between 82% and 95% of these cells express SGN molecular markers,they preferentially extend neurites to the cochlear nucleus rather than nonauditory nuclei,and they generate action potentials. The protocol follows an in vitro stepwise recapitulation of developmental events inherent to normal differentiation of hESCs into SGNs,resulting in efficient sequential generation of nonneuronal ectoderm,preplacodal ectoderm,early prosensory ONPs,late ONPs,and cells with cellular and molecular characteristics of human SGNs. We thus describe the sequential signaling pathways that generate the early and later lineage species in the human SGN lineage,thereby better describing key developmental processes. The results indicate that our protocol generates cells that closely replicate the phenotypic characteristics of human SGNs,advancing the process of guiding hESCs to states serving inner-ear cell-replacement therapies and possible next-generation hybrid auditory prostheses. textcopyright Stem Cells Translational Medicine 2017;6:923-936.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
05790
05792
05793
05794
05795
85850
85857
85870
85875
产品名:
BrainPhys™神经元培养基
BrainPhys™神经元培养基和SM1试剂盒
BrainPhys™ 神经元培养基N2-A和SM1试剂盒
BrainPhys™原代神经元试剂盒
BrainPhys™ hPSC 神经元试剂盒
mTeSR™1
mTeSR™1
Hothi P et al. (OCT 2012)
Oncotarget 3 10 1124--36
High-Throughput Chemical Screens Identify Disulfiram as an Inhibitor of Human Glioblastoma Stem Cells
Glioblastoma Multiforme (GBM) continues to have a poor patient prognosis despite optimal standard of care. Glioma stem cells (GSCs) have been implicated as the presumed cause of tumor recurrence and resistance to therapy. With this in mind,we screened a diverse chemical library of 2,000 compounds to identify therapeutic agents that inhibit GSC proliferation and therefore have the potential to extend patient survival. High-throughput screens (HTS) identified 78 compounds that repeatedly inhibited cellular proliferation,of which 47 are clinically approved for other indications and 31 are experimental drugs. Several compounds (such as digitoxin,deguelin,patulin and phenethyl caffeate) exhibited high cytotoxicity,with half maximal inhibitory concentrations (IC50) in the low nanomolar range. In particular,the FDA approved drug for the treatment of alcoholism,disulfiram (DSF),was significantly potent across multiple patient samples (IC50 of 31.1 nM). The activity of DSF was potentiated by copper (Cu),which markedly increased GSC death. DSF-Cu inhibited the chymotrypsin-like proteasomal activity in cultured GSCs,consistent with inactivation of the ubiquitin-proteasome pathway and the subsequent induction of tumor cell death. Given that DSF is a relatively non-toxic drug that can penetrate the blood-brain barrier,we suggest that DSF should be tested (as either a monotherapy or as an adjuvant) in pre-clinical models of human GBM. Data also support targeting of the ubiquitin-proteasome pathway as a therapeutic approach in the treatment of GBM.
View Publication
El-Helou V et al. (NOV 2005)
Hypertension 46 5 1219--25
Resident nestin+ neural-like cells and fibers are detected in normal and damaged rat myocardium.
The present study examined whether nestin+ neural-like stem cells detected in the scar tissue of rats 1 week after myocardial infarction (MI) were derived from bone marrow and/or were resident cells of the normal myocardium. Irradiated male Wistar rats transplanted with beta-actin promoter-driven,green fluorescent protein (GFP)-labeled,unfractionated bone marrow cells were subjected to coronary artery ligation. Three weeks after MI,GFP-labeled bone marrow cells were detected in the infarct region,and a modest number were associated with nestin immunoreactivity. The paucity of GFP+/nestin+ cells in the scar tissue provided the impetus to explore whether neural-like stem cells were derived from cardiac tissue. Nestin mRNA and immunoreactivity were detected in normal rat myocardium,and transcript levels were increased in the damaged heart after MI. In primary-passage,cardiac tissue-derived neural cells,filamentous nestin staining was associated with a diffuse,cytoplasmic glial fibrillary acidic protein signal. Unexpectedly,in viable myocardium,numerous nestin+/glial fibrillary acidic protein+ fiberlike structures of varying length were detected and observed in close proximity to neurofilament-M+ fibers. The infarct region was likewise innervated,and the preponderance of neurofilament-M+ fibers appeared to be physically associated with nestin+ fiberlike structures. These data highlight the novel observation that the normal rat heart contained resident nestin+/glial fibrillary acidic protein+ neural-like stem cells,fiberlike structures,and nestin mRNA levels that were increased in response to myocardial ischemia. Cardiac tissue-derived neural stem cell migration to the infarct region and concomitant nestin+ fiberlike innervation represent obligatory events of reparative fibrosis in the damaged rat myocardium.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠&大鼠)
NeuroCult™ 扩增添加物 (小鼠&大鼠)
NeuroCult™ 扩增试剂盒 (小鼠&大鼠)
Yasuda T et al. (FEB 2008)
Molecular and cellular neurosciences 37 2 284--97
K(ir) and K(v) channels regulate electrical properties and proliferation of adult neural precursor cells.
The functional significance of the electrophysiological properties of neural precursor cells (NPCs) was investigated using dissociated neurosphere-derived NPCs from the forebrain subventricular zone (SVZ) of adult mice. NPCs exhibited hyperpolarized resting membrane potentials,which were depolarized by the K(+) channel inhibitor,Ba(2+). Pharmacological analysis revealed two distinct K(+) channel families: Ba(2+)-sensitive K(ir) channels and tetraethylammonium (TEA)-sensitive K(v) (primarily K(DR)) channels. Ba(2+) promoted mitogen-stimulated NPC proliferation,which was mimicked by high extracellular K(+),whereas TEA inhibited proliferation. Based on gene and protein levels in vitro,we identified K(ir)4.1,K(ir)5.1 and K(v)3.1 channels as the functional K(+) channel candidates. Expression of these K(+) channels was immunohistochemically found in NPCs of the adult mouse SVZ,but was negligible in neuroblasts. It therefore appears that expression of K(ir) and K(v) (K(DR)) channels in NPCs and related changes in the resting membrane potential could contribute to NPC proliferation and neuronal lineage commitment in the neurogenic microenvironment.
View Publication
产品类型:
产品号#:
05701
产品名:
NeuroCult™ 扩增添加物 (小鼠&大鼠)
Lemonnier T et al. (SEP 2011)
Human Molecular Genetics 20 18 3653--3666
Modeling neuronal defects associated with a lysosomal disorder using patient-derived induced pluripotent stem cells.
By providing access to affected neurons,human induced pluripotent stem cells (iPSc) offer a unique opportunity to model human neurodegenerative diseases. We generated human iPSc from the skin fibroblasts of children with mucopolysaccharidosis type IIIB. In this fatal lysosomal storage disease,defective α-N-acetylglucosaminidase interrupts the degradation of heparan sulfate (HS) proteoglycans and induces cell disorders predominating in the central nervous system,causing relentless progression toward severe mental retardation. Partially digested proteoglycans,which affect fibroblast growth factor signaling,accumulated in patient cells. They impaired isolation of emerging iPSc unless exogenous supply of the missing enzyme cleared storage and restored cell proliferation. After several passages,patient iPSc starved of an exogenous enzyme continued to proliferate in the presence of fibroblast growth factor despite HS accumulation. Survival and neural differentiation of patient iPSc were comparable with unaffected controls. Whereas cell pathology was modest in floating neurosphere cultures,undifferentiated patient iPSc and their neuronal progeny expressed cell disorders consisting of storage vesicles and severe disorganization of Golgi ribbons associated with modified expression of the Golgi matrix protein GM130. Gene expression profiling in neural stem cells pointed to alterations of extracellular matrix constituents and cell-matrix interactions,whereas genes associated with lysosome or Golgi apparatus functions were downregulated. Taken together,these results suggest defective responses of patient undifferentiated stem cells and neurons to environmental cues,which possibly affect Golgi organization,cell migration and neuritogenesis. This could have potential consequences on post-natal neurological development,once HS proteoglycan accumulation becomes prominent in the affected child brain.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
60053
85850
85857
85870
85875
产品名:
抗少突胶质细胞标志物O4抗体,clone 81
mTeSR™1
mTeSR™1
Chung D et al. (JAN 2014)
The Veterinary Journal 199 1 123--130
Effect of hypoxia on generation of neurospheres from adipose tissue-derived canine mesenchymal stromal cells
Adipose tissue-derived mesenchymal stromal cells (AT-MSCs) are good candidates for cell therapy due to the accessibility of fat tissue and the abundance of AT-MSCs therein. Neurospheres are free-floating spherical condensations of cells with neural stem/progenitor cell (NSPC) characteristics that can be derived from AT-MSCs. The aims of this study were to examine the influence of oxygen (O2) tension on generation of neurospheres from canine AT-MSCs (AT-cMSCs) and to develop a hypoxic cell culture system to enhance the survival and therapeutic benefit of generated neurospheres. AT-cMSCs were cultured under varying oxygen tensions (1%,5% and 21%) in a neurosphere culture system. Neurosphere number and area were evaluated and NSPC markers were quantified using real-time quantitative PCR (qPCR). Effects of oxygen on neurosphere expression of hypoxia inducible factor 1,α subunit (HIF1A) and its target genes,erythropoietin receptor (EPOR),chemokine (C-X-C motif) receptor 4 (CXCR4) and vascular endothelial growth factor (VEGF),were quantified by qPCR. Neural differentiation potential was evaluated in 21% O2 by cell morphology and qPCR. Neurospheres were successfully generated from AT-cMSCs at all O2 tensions. Expression of nestin mRNA (NES) was significantly increased after neurosphere culture and was significantly higher in 1% O2 compared to 5% and 21% O2. Neurospheres cultured in 1% O2 had significantly increased levels of VEGF and EPOR. There was a significant increase in CXCR4 expression in neurospheres generated at all O2 tensions. Neurosphere culture under hypoxia had no negative effect on subsequent neural differentiation. This study suggests that generation of neurospheres under hypoxia could be beneficial when considering these cells for neurological cell therapies.
View Publication
产品类型:
产品号#:
05750
05751
05752
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
NeuroCult™ NS-A 分化试剂盒 (人)
Binda E et al. (DEC 2012)
Cancer cell 22 6 765--80
The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas.
In human glioblastomas (hGBMs),tumor-propagating cells with stem-like characteristics (TPCs) represent a key therapeutic target. We found that the EphA2 receptor tyrosine kinase is overexpressed in hGBM TPCs. Cytofluorimetric sorting into EphA2(High) and EphA2(Low) populations demonstrated that EphA2 expression correlates with the size and tumor-propagating ability of the TPC pool in hGBMs. Both ephrinA1-Fc,which caused EphA2 downregulation in TPCs,and siRNA-mediated knockdown of EPHA2 expression suppressed TPCs self-renewal ex vivo and intracranial tumorigenicity,pointing to EphA2 downregulation as a causal event in the loss of TPCs tumorigenicity. Infusion of ephrinA1-Fc into intracranial xenografts elicited strong tumor-suppressing effects,suggestive of therapeutic applications.
View Publication