GABP controls a critical transcription regulatory module that is essential for maintenance and differentiation of hematopoietic stem/progenitor cells.
Maintaining a steady pool of self-renewing hematopoietic stem cells (HSCs) is critical for sustained production of multiple blood lineages. Many transcription factors and molecules involved in chromatin and epigenetic modifications have been found to be critical for HSC self-renewal and differentiation; however,their interplay is less understood. The transcription factor GA binding protein (GABP),consisting of DNA-binding subunit GABPα and transactivating subunit GABPβ,is essential for lymphopoiesis as shown in our previous studies. Here we demonstrate cell-intrinsic,absolute dependence on GABPα for maintenance and differentiation of hematopoietic stem/progenitor cells. Through genome-wide mapping of GABPα binding and transcriptomic analysis of GABPα-deficient HSCs,we identified Zfx and Etv6 transcription factors and prosurvival Bcl-2 family members including Bcl-2,Bcl-X(L),and Mcl-1 as direct GABP target genes,underlying its pivotal role in HSC survival. GABP also directly regulates Foxo3 and Pten and hence sustains HSC quiescence. Furthermore,GABP activates transcription of DNA methyltransferases and histone acetylases including p300,contributing to regulation of HSC self-renewal and differentiation. These systematic analyses revealed a GABP-controlled gene regulatory module that programs multiple aspects of HSC biology. Our studies thus constitute a critical first step in decoding how transcription factors are orchestrated to regulate maintenance and multipotency of HSCs.
View Publication
Amplification of Sca-1+ Lin- WGA+ cells in serum-free cultures containing steel factor, interleukin-6, and erythropoietin with maintenance of cells with long-term in vivo reconstituting potential.
Normal murine bone marrow (BM) cells were sorted on the basis of low forward and orthogonal light scatter properties,Sca-1 expression (Sca-1+),lack of staining with a cocktail of mature hematopoietic lineage markers (Lin-),and binding of wheat germ agglutinin (WGA+). This approach allowed the reproducible isolation of a very small subpopulation (0.037% +/- 0.023% of all nucleated BM cells) that was approximately 400-fold enriched in cells capable of reconstituting both lymphoid and myeloid lineages in lethally irradiated recipients. Transplantation of 30 or 10 of these Sca-1+Lin-WGA+ cells resulted in textgreater or = to 20% donor-derived nucleated peripheral blood cells 3 months posttransplantation in 100% and 22% of the recipients,respectively. When Sca-1+Lin-WGA+ cells were cultured in serum-free medium supplemented with Steel factor,interleukin-6 (IL-6),and erythropoietin (with or without IL-3),a large increase in total cell number,including cells with an Sca-1+Lin-WGA+ phenotype was observed. Single cell cultures showed that 90% to 95% of the input cells underwent at least one division during the first 2 weeks and the remainder died. Interestingly,this proliferative response was not accompanied by a parallel increase in the number of cells with both lymphoid and myeloid repopulating potential in vivo,as quantitation of these by limiting dilution analysis showed they had decreased slightly (1.3-fold) but not significantly below the number initially present. These results demonstrate that Sca-1+Lin-WGA+ cells with long-term repopulating potential can be maintained for 2 weeks in a serum- and stroma cell-free culture,providing a simple in vitro system to study their behavior under well-defined conditions. The observed expansion of Sca-1+Lin-WGA+ cells in vitro without a concomitant increase in reconstituting cells also shows that extensive functional heterogeneity exists within populations of cells with this surface phenotype.
View Publication
产品类型:
产品号#:
02690
02696
02697
09300
09500
09600
09650
产品名:
StemSpan™CC100
StemSpan™巨核细胞扩增补充(100X)
StemSpan™CC110
含有10% 牛血清白蛋白(BSA)的 Iscove's MDM
BIT 9500血清替代物
StemSpan™ SFEM
StemSpan™ SFEM
文献
Siatskas C et al. (OCT 2005)
FASEB journal : official publication of the Federation of American Societies for Experimental Biology 19 12 1752--4
Specific pharmacological dimerization of KDR in lentivirally transduced human hematopoietic cells activates anti-apoptotic and proliferative mechanisms.
Selective and regulatable expansion of transduced cells could augment gene therapy for many disorders. The activation of modified growth factor receptors via synthetic chemical inducers of dimerization allows for the coordinated growth of transduced cells. This system can also provide information on specific receptor-mediated signaling without interference from other family members. Although several receptor subunits have been investigated in this context,little is known about the precise molecular events associated with dimerizer-initiated signaling. We have constructed and expressed an AP20187-regulated KDR chimeric receptor in human TF1 cells and analyzed activation of this gene switch using functional,biochemical,and microarray analyses. When deprived of natural ligands,GM-CSF,interleukin-3,or erythropoietin,AP20187 prevented apoptosis of transduced TF1 cells,induced dose-dependent proliferation,and supported long-term growth. In addition,AP20187 stimulation activated the signaling molecules associated with mitogen-activated protein kinase and phosphatidyl-inositol 3-kinase/Akt pathways. Microarray analysis determined that a number of transcripts involved in a variety of cellular processes were differentially expressed. Notably,mRNAs affiliated with heat stress,including Hsp70 and Hsp105,were up-regulated. Functional assays showed that Hsp70 and Hsp105 protected transduced TF1 cells from apoptosis and premature senescence,in part through regulation of Akt. These observations delineate specific roles for kinase insert domain-containing receptor,or KDR,signaling and suggest strategies to endow genetically modified cells with a survival advantage enabling the generation of adequate cell numbers for therapeutic outcomes.
View Publication
Expansion of hematopoietic progenitor cell populations in stirred suspension bioreactors of normal human bone marrow cells.
We have investigated the potential of stirred suspension cultures to support hematopoiesis from starting innocula of normal human bone marrow cells. Initial studies showed that the short-term maintenance of both colony-forming cell (CFC) numbers and their precursors,detected as long-term culture-initiating cells (LTC-IC),could be achieved as well in stirred suspension cultures as in static cultures. Neither of these progenitor cell populations was affected in either type of culture when porous microcarriers were added to provide an increased surface for adherent cell attachment. Supplementation of the medium with 10 ng/ml of Steel factor (SF) and 2 ng/ml of interleukin-3 (IL-3) resulted in a significant expansion of LTC-IC,CFC and total cell numbers in stirred cultures. Both the duration and ultimate magnitude of these expansions were correlated with the initial cell density and after 4 weeks the number of LTC-IC and CFC present in stirred cultures initiated with the highest starting cell concentration tested reflected average increases of 7- and 22-fold,respectively,above input values. Stirred suspension cultures offer the combined advantages of homogeneity and lack of dependence on the formation and maintenance of an adherent cell layer. Our results suggest their applicability to the development of scaled-up bioreactor systems for clinical procedures requiring the production of primitive hematopoietic cell populations. In addition,stirred suspension cultures may offer a new tool for the analysis of hematopoietic regulatory mechanisms.
View Publication
产品类型:
产品号#:
05150
产品名:
MyeloCult™H5100
文献
Sutherland HJ et al. (MAY 1990)
Proceedings of the National Academy of Sciences of the United States of America 87 9 3584--8
Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers.
A major goal of current hematopoiesis research is to develop in vitro methods suitable for the measurement and characterization of stem cells with long-term in vivo repopulating potential. Previous studies from several centers have suggested the presence in normal human or murine marrow of a population of very primitive cells that are biologically,physically,and pharmacologically different from cells detectable by short-term colony assays and that can give rise to the latter in long-term cultures (LTCs) containing a competent stromal cell layer. In this report,we show that such cultures can be used to provide a quantitative assay for human LTC-initiating cells" based on an assessment of the number of clonogenic cells present after 5-8 weeks. Production of derivative clonogenic cells is shown to be absolutely dependent on the presence of a stromal cell feeder. When this requirement is met�
View Publication
产品类型:
产品号#:
28600
产品名:
L-Calc™有限稀释软件
文献
Jiang G et al. (SEP 2014)
Tissue engineering. Part C,Methods 20 9 731--740
Induced pluripotent stem cells from human placental chorion for perinatal tissue engineering applications.
The reliable derivation of induced pluripotent stem cells (iPSCs) from a noninvasive autologous source at birth would facilitate the study of patient-specific in vitro modeling of congenital diseases and would enhance ongoing efforts aimed at developing novel cell-based treatments for a wide array of fetal and pediatric disorders. Accordingly,we have successfully generated iPSCs from human fetal chorionic somatic cells extracted from term pregnancies by ectopic expression of OCT4,SOX2,KLF4,and cMYC. The isolated parental somatic cells exhibited an immunophenotypic profile consistent with that of chorionic mesenchymal stromal cells (CMSCs). CMSC-iPSCs maintained pluripotency in feeder-free systems for more than 15 passages based on morphology,immunocytochemistry,and gene expression studies and were capable of embryoid body formation with spontaneous trilineage differentiation. CMSC-iPSCs could be selectively differentiated in vitro into various germ layer derivatives,including neural stem cells,beating cardiomyocytes,and definitive endoderm. This study demonstrates the feasibility of term placental chorion as a novel noninvasive alternative to dermal fibroblasts and cord blood for human perinatal iPSC derivation and may provide additional insights regarding the reprogramming capabilities of extra-embryonic tissues as they relate to developmental ontogeny and perinatal tissue engineering applications.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Zhu W-Z et al. ( 2011)
Methods in molecular biology (Clifton,N.J.) 767 419--31
Methods for the derivation and use of cardiomyocytes from human pluripotent stem cells.
The availability of human cardiomyocytes derived from embryonic stem cells (ESCs) has generated -considerable excitement,as these cells are an excellent model system for studying myocardial development and may have eventual application in cell-based cardiac repair. Cardiomyocytes derived from the related induced pluripotent stem cells (iPSCs) have similar properties,but also offer the prospects of patient-specific disease modeling and cell therapies. Unfortunately,the methods by which cardiomyocytes have been historically generated from pluripotent stem cells are unreliable and typically result in preparations of low cardiac purity (typically textless1% cardiomyocytes). We detail here the methods for a recently reported directed cardiac differentiation protocol,which involves the serial application of two growth factors known to be involved in early embryonic heart development,activin A,and bone morphogenetic protein-4 (BMP-4). This protocol reliably yields preparations of 30-60% cardiomyocytes,which can then be further enriched to textgreater90% cardiomyocytes using straightforward physical methods.
View Publication
产品类型:
产品号#:
07930
07931
07940
07955
07959
产品名:
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
文献
Onuma Y et al. (FEB 2013)
Biochemical and biophysical research communications 431 3 524--529
RBC2LCN, a new probe for live cell imaging of human pluripotent stem cells
Cell surface biomarkers have been applied to discriminate pluripotent human embryonic stem cells and induced pluripotent stem cells from differentiated cells. Here,we demonstrate that a recombinant lectin probe,rBC2LCN,a new tool for fluorescence-based imaging and flow cytometry analysis of pluripotent stem cells,is an alternative to conventional pluripotent maker antibodies. Live or fixed colonies of both human embryonic stem cells and induced pluripotent stem cells were visualized in culture medium containing fluorescent dye-labeled rBC2LCN. Fluorescent dye-labeled rBC2LCN was also successfully used to separate live pluripotent stem cells from a mixed cell population by flow cytometry. textcopyright 2013 Elsevier Inc.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Sequiera GL et al. (JAN 2016)
Methods in molecular biology (Clifton,N.J.) 1307 379--83
A Simple Protocol for the Generation of Cardiomyocytes from Human Pluripotent Stem Cells.
Efficient generation of cardiomyocytes from pluripotent stem cells (PSCs) for multiple downstream applications such as regenerative medicine,disease modeling,and drug screening remains a challenge. Cardiomyogenesis may be regulated in vitro by a controlled differentiation process,which involves various signaling molecules and extracellular environment. Here,we describe a simple method to efficiently generate cardiomyocytes from human embryonic stem cells and human induced pluripotent stem cells.
View Publication
Kanninen LK et al. (JUN 2016)
Biomaterials 103 86--100
Laminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells
Human pluripotent stem cells (hPSCs) have gained a solid foothold in basic research and drug industry as they can be used in??vitro to study human development and have potential to offer limitless supply of various somatic cell types needed in drug development. Although the hepatic differentiation of hPSCs has been extensively studied,only a little attention has been paid to the role of the extracellular matrix. In this study we used laminin-511,laminin-521,and fibronectin,found in human liver progenitor cells,as culture matrices for hPSC-derived definitive endoderm cells. We observed that laminin-511 and laminin-521 either alone or in combination support the hepatic specification and that fibronectin is not a vital matrix protein for the hPSC-derived definitive endoderm cells. The expression of the laminin-511/521-specific integrins increased during the definitive endoderm induction and hepatic specification. The hepatic cells differentiated on laminin matrices showed the upregulation of liver-specific markers both at mRNA and protein levels,secreted human albumin,stored glycogen,and exhibited cytochrome P450 enzyme activity and inducibility. Altogether,we found that laminin-511 and laminin-521 can be used as stage-specific matrices to guide the hepatic specification of hPSC-derived definitive endoderm cells.
View Publication