L. Chicaybam et al. ( 2016)
Frontiers in bioengineering and biotechnology 4 99
An Efficient Electroporation Protocol for the Genetic Modification of Mammalian Cells.
Genetic modification of cell lines and primary cells is an expensive and cumbersome approach,often involving the use of viral vectors. Electroporation using square-wave generating devices,like Lonza's Nucleofector,is a widely used option,but the costs associated with the acquisition of electroporation kits and the transient transgene expression might hamper the utility of this methodology. In the present work,we show that our in-house developed buffers,termed Chicabuffers,can be efficiently used to electroporate cell lines and primary cells from murine and human origin. Using the Nucleofector II device,we electroporated 14 different cell lines and also primary cells,like mesenchymal stem cells and cord blood CD34+,providing optimized protocols for each of them. Moreover,when combined with sleeping beauty-based transposon system,long-term transgene expression could be achieved in all types of cells tested. Transgene expression was stable and did not interfere with CD34+ differentiation to committed progenitors. We also show that these buffers can be used in CRISPR-mediated editing of PDCD1 gene locus in 293T and human peripheral blood mononuclear cells. The optimized protocols reported in this study provide a suitable and cost-effective platform for the genetic modification of cells,facilitating the widespread adoption of this technology.
View Publication
产品类型:
产品号#:
04034
04044
22001
22005
22006
22007
22008
22009
22011
22012
产品名:
MethoCult™H4034 Optimum
MethoCult™H4034 Optimum
STEMvision™ 人脐带血7-天CFU分析包
STEMvision™ 彩色人脐带血14-天CFU分析包
STEMvision™ 彩色人骨髓14-天CFU分析包
STEMvision™ 彩色人动员外周血14-天CFU分析包
STEMvision™ 小鼠总CFU分析包
STEMvision™ 小鼠髓系CFU分析包
STEMvision™ 小鼠红系CFU分析包
STEMvision™ 小鼠CFU分析包(髓系和红系)
文献
A. Lopresti et al. (jun 2019)
JCI insight 5
Sensitive and easy screening for circulating tumor cells by flow cytometry.
Circulating Tumor Cells (CTCs) represent an easy,repeatable and representative access to information regarding solid tumors. However,their detection remains difficult because of their paucity,their short half-life,and the lack of reliable surface biomarkers. Flow cytometry (FC) is a fast,sensitive and affordable technique,ideal for rare cells detection. Adapted to CTCs detection (i.e. extremely rare cells),most FC-based techniques require a time-consuming pre-enrichment step,followed by a 2-hours staining procedure,impeding on the efficiency of CTCs detection. We overcame these caveats and reduced the procedure to less than one hour,with minimal manipulation. First,cells were simultaneously fixed,permeabilized,then stained. Second,using low-speed FC acquisition conditions and two discriminators (cell size and pan-cytokeratin expression),we suppressed the pre-enrichment step. Applied to blood from donors with or without known malignant diseases,this protocol ensures a high recovery of the cells of interest independently of their epithelial-mesenchymal plasticity and can predict which samples are derived from cancer donors. This proof-of-concept study lays the bases of a sensitive tool to detect CTCs from a small amount of blood upstream of in-depth analyses.
View Publication
产品类型:
产品号#:
15122
15162
产品名:
RosetteSep™ 人CD45去除抗体混合物
RosetteSep™人CD45去除抗体混合物
文献
L. T. Donlin et al. (JUL 2018)
Arthritis research & therapy 20 1 139
Methods for high-dimensonal analysis of cells dissociated from cyropreserved synovial tissue.
BACKGROUND Detailed molecular analyses of cells from rheumatoid arthritis (RA) synovium hold promise in identifying cellular phenotypes that drive tissue pathology and joint damage. The Accelerating Medicines Partnership RA/SLE Network aims to deconstruct autoimmune pathology by examining cells within target tissues through multiple high-dimensional assays. Robust standardized protocols need to be developed before cellular phenotypes at a single cell level can be effectively compared across patient samples. METHODS Multiple clinical sites collected cryopreserved synovial tissue fragments from arthroplasty and synovial biopsy in a 10{\%} DMSO solution. Mechanical and enzymatic dissociation parameters were optimized for viable cell extraction and surface protein preservation for cell sorting and mass cytometry,as well as for reproducibility in RNA sequencing (RNA-seq). Cryopreserved synovial samples were collectively analyzed at a central processing site by a custom-designed and validated 35-marker mass cytometry panel. In parallel,each sample was flow sorted into fibroblast,T-cell,B-cell,and macrophage suspensions for bulk population RNA-seq and plate-based single-cell CEL-Seq2 RNA-seq. RESULTS Upon dissociation,cryopreserved synovial tissue fragments yielded a high frequency of viable cells,comparable to samples undergoing immediate processing. Optimization of synovial tissue dissociation across six clinical collection sites with {\~{}} 30 arthroplasty and {\~{}} 20 biopsy samples yielded a consensus digestion protocol using 100 mu$g/ml of Liberase™ TL enzyme preparation. This protocol yielded immune and stromal cell lineages with preserved surface markers and minimized variability across replicate RNA-seq transcriptomes. Mass cytometry analysis of cells from cryopreserved synovium distinguished diverse fibroblast phenotypes,distinct populations of memory B cells and antibody-secreting cells,and multiple CD4+ and CD8+ T-cell activation states. Bulk RNA-seq of sorted cell populations demonstrated robust separation of synovial lymphocytes,fibroblasts,and macrophages. Single-cell RNA-seq produced transcriptomes of over 1000 genes/cell,including transcripts encoding characteristic lineage markers identified. CONCLUSIONS We have established a robust protocol to acquire viable cells from cryopreserved synovial tissue with intact transcriptomes and cell surface phenotypes. A centralized pipeline to generate multiple high-dimensional analyses of synovial tissue samples collected across a collaborative network was developed. Integrated analysis of such datasets from large patient cohorts may help define molecular heterogeneity within RA pathology and identify new therapeutic targets and biomarkers.
View Publication
产品类型:
产品号#:
07930
07931
07940
07955
07959
07952
产品名:
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
文献
Sutherland HJ et al. (MAY 1990)
Proceedings of the National Academy of Sciences of the United States of America 87 9 3584--8
Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers.
A major goal of current hematopoiesis research is to develop in vitro methods suitable for the measurement and characterization of stem cells with long-term in vivo repopulating potential. Previous studies from several centers have suggested the presence in normal human or murine marrow of a population of very primitive cells that are biologically,physically,and pharmacologically different from cells detectable by short-term colony assays and that can give rise to the latter in long-term cultures (LTCs) containing a competent stromal cell layer. In this report,we show that such cultures can be used to provide a quantitative assay for human LTC-initiating cells" based on an assessment of the number of clonogenic cells present after 5-8 weeks. Production of derivative clonogenic cells is shown to be absolutely dependent on the presence of a stromal cell feeder. When this requirement is met�
View Publication
产品类型:
产品号#:
28600
产品名:
L-Calc™有限稀释软件
文献
Woods EJ et al. (OCT 2009)
Cryobiology 59 2 150--7
Optimized cryopreservation method for human dental pulp-derived stem cells and their tissues of origin for banking and clinical use.
Dental pulp is a promising source of mesenchymal stem cells with the potential for cell-mediated therapies and tissue engineering applications. We recently reported that isolation of dental pulp-derived stem cells (DPSC) is feasible for at least 120h after tooth extraction,and that cryopreservation of early passage cultured DPSC leads to high-efficiency recovery post-thaw. This study investigated additional processing and cryobiological characteristics of DPSC,ending with development of procedures for banking. First,we aimed to optimize cryopreservation of established DPSC cultures,with regards to optimizing the cryoprotective agent (CPA),the CPA concentration,the concentration of cells frozen,and storage temperatures. Secondly,we focused on determining cryopreservation characteristics of enzymatically digested tissue as a cell suspension. Lastly,we evaluated the growth,surface markers and differentiation properties of DPSC obtained from intact teeth and undigested,whole dental tissue frozen and thawed using the optimized procedures. In these experiments it was determined that Me(2)SO at a concentration between 1 and 1.5M was the ideal cryopreservative of the three studied. It was also determined that DPSC viability after cryopreservation is not limited by the concentration of cells frozen,at least up to 2x10(6) cells/mL. It was further established that DPSC can be stored at -85 degrees C or -196 degrees C for at least six months without loss of functionality. The optimal results with the least manipulation were achieved by isolating and cryopreserving the tooth pulp tissues,with digestion and culture performed post-thaw. A recovery of cells from textgreater85% of the tissues frozen was achieved and cells isolated post-thaw from tissue processed and frozen with a serum free,defined cryopreservation medium maintained morphological and developmental competence and demonstrated MSC-hallmark trilineage differentiation under the appropriate culture conditions.
View Publication
产品类型:
产品号#:
05401
05402
05411
产品名:
MesenCult™ MSC基础培养基 (人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
文献
Uchida N et al. (JUN 2004)
Blood 103 12 4487--95
ABC transporter activities of murine hematopoietic stem cells vary according to their developmental and activation status.
Primitive hematopoietic cells from several species are known to efflux both Hoechst 33342 and Rhodamine-123. We now show that murine hematopoietic stem cells (HSCs) defined by long-term multilineage repopulation assays efflux both dyes variably according to their developmental or activation status. In day 14.5 murine fetal liver,very few HSCs efflux Hoechst 33342 efficiently,and they are thus not detected as side population" (SP) cells. HSCs in mouse fetal liver also fail to efflux Rhodamine-123. Both of these features are retained by most of the HSCs present until 4 weeks after birth but are reversed by 8 weeks of age or after a new HSC population is regenerated in adult mice that receive transplants with murine fetal liver cells. Activation of adult HSCs in vivo following 5-fluorouracil treatment�
View Publication
产品类型:
产品号#:
18756
18756RF
产品名:
EasySep™小鼠SCA1正选试剂盒
RoboSep™ 小鼠SCA1正选试剂盒含滤芯吸头
文献
N. Tsuji et al. (jun 2022)
Leukemia 36 6 1666--1675
Frequent HLA-DR loss on hematopoietic stem progenitor cells in patients with cyclosporine-dependent aplastic anemia carrying HLA-DR15.
To determine whether antigen presentation by HLA-DR on hematopoietic stem progenitor cells (HSPCs) is involved in the development of acquired aplastic anemia (AA),we studied the HLA-DR expression on CD45dimCD34+CD38+ cells in the peripheral blood of 61 AA patients including 23 patients possessing HLA-class I allele-lacking (HLA-class I[-]) leukocytes. HLA-DR-lacking (DR[-]) cells accounted for 13.0-57.1% of the total HSPCs in seven (11.5%) patients with HLA-DR15 who did not possess HLA-class I(-) leukocytes. The incubation of sorted DR(-) HSPCs in the presence of IFN-$\gamma$ for 72??h resulted in the full restoration of the DR expression. A comparison of the transcriptome profile between DR(-) and DR(+) HSPCs revealed the lower expression of immune response-related genes including co-stimulatory molecules (e.g.,CD48,CD74,and CD86) in DR(-) cells,which was not evident in HLA-class I(-) HSPCs. DR(-) cells were exclusively detected in GPI(+) HSPCs in four patients whose HSPCs could be analyzed separately for GPI(+) and GPI(-) HSPCs. These findings suggest that CD4+ T cells specific to antigens presented by HLA-DR15 on HSPCs may contribute to the development of AA as well as the immune escape of GPI(-) HSPCs in a distinct way from CD8+ T cells recognizing HLA-class I-restricted antigens.
View Publication
产品类型:
产品号#:
产品名:
文献
Beamish CA et al. (APR 2016)
Islets 8 3 65--82
Insulin-positive, Glut2-low cells present within mouse pancreas exhibit lineage plasticity and are enriched within extra-islet endocrine cell clusters.
Regeneration of insulin-producing β-cells from resident pancreas progenitors requires an understanding of both progenitor identity and lineage plasticity. One model suggested that a rare β-cell sub-population within islets demonstrated multi-lineage plasticity. We hypothesized that β-cells from young mice (postnatal day 7,P7) exhibit such plasticity and used a model of islet dedifferentiation toward a ductal epithelial-cell phenotype to test this theory. RIPCre;Z/AP(+/+) mice were used to lineage trace the fate of β-cells during dedifferentiation culture by a human placental alkaline phosphatase (HPAP) reporter. There was a significant loss of HPAP-expressing β-cells in culture,but remaining HPAP(+) cells lost insulin expression while gaining expression of the epithelial duct cell marker cytokeratin-19 (Ck19). Flow cytometry and recovery of β-cell subpopulations from whole pancreas vs. islets suggest that the HPAP(+)Ck19(+) cells had derived from insulin-positive,glucose-transporter-2-low (Ins(+)Glut2(LO)) cells,representing 3.5% of all insulin-expressing cells. The majority of these cells were found outside of islets within clusters of <5 β-cells. These insulin(+)Glut2(LO) cells demonstrated a greater proliferation rate in vivo and in vitro as compared to insulin(+)Glut2(+) cells at P7,were retained into adulthood,and a subset differentiated into endocrine,ductal,and neural lineages,illustrating substantial plasticity. Results were confirmed using RIPCre;ROSA- eYFP mice. Quantitative PCR data indicated these cells possess an immature β-cell phenotype. These Ins(+)Glut2(LO) cells may represent a resident population of cells capable of forming new,functional β-cells,and which may be potentially exploited for regenerative therapies in the future.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠&大鼠)
NeuroCult™ 扩增添加物 (小鼠&大鼠)
NeuroCult™ 扩增试剂盒 (小鼠&大鼠)
文献
F. L\u\"ond et al." (jun 2022)
STAR protocols 3 2 101438
Tracking and characterization of partial and full epithelial-mesenchymal transition cells in a mouse model of metastatic breast cancer.
The various stages of epithelial-mesenchymal transition (EMT) generate phenotypically heterogeneous populations of cells. Here,we detail a dual recombinase lineage tracing system using a transgenic mouse model of metastatic breast cancer to trace and characterize breast cancer cells at different EMT stages. We describe analytical steps to label cancer cells at an early partial or a late full EMT state,followed by tracking their behavior in tumor slice cultures. We then characterize their transcriptome by five-cell RNA sequencing.
View Publication
ETS2 and ERG promote megakaryopoiesis and synergize with alterations in GATA-1 to immortalize hematopoietic progenitor cells.
ETS2 and ERG are transcription factors,encoded on human chromosome 21 (Hsa21),that have been implicated in human cancer. People with Down syndrome (DS),who are trisomic for Hsa21,are predisposed to acute megakaryoblastic leukemia (AMKL). DS-AMKL blasts harbor a mutation in GATA1,which leads to loss of full-length protein but expression of the GATA-1s isoform. To assess the consequences of ETS protein misexpression on megakaryopoiesis,we expressed ETS2,ERG,and the related protein FLI-1 in wild-type and Gata1 mutant murine fetal liver progenitors. These studies revealed that ETS2,ERG,and FLI-1 facilitated the expansion of megakaryocytes from wild-type,Gata1-knockdown,and Gata1s knockin progenitors,but none of the genes could overcome the differentiation block characteristic of the Gata1-knockdown megakaryocytes. Although overexpression of ETS proteins increased the proportion of CD41(+) cells generated from Gata1s-knockin progenitors,their expression led to a significant reduction in the more mature CD42 fraction. Serial replating assays revealed that overexpression of ERG or FLI-1 immortalized Gata1-knockdown and Gata1s knockin,but not wild-type,fetal liver progenitors. Immortalization was accompanied by activation of the JAK/STAT pathway,commonly seen in megakaryocytic malignancies. These findings provide evidence for synergy between alterations in GATA-1 and overexpression of ETS proteins in aberrant megakaryopoiesis.
View Publication
产品类型:
产品号#:
03234
产品名:
MethoCult™M3234
文献
Byun H-M et al. (JUL 2005)
Biochemical and biophysical research communications 332 2 518--23
Plasmid vectors harboring cellular promoters can induce prolonged gene expression in hematopoietic and mesenchymal progenitor cells.
Although prolonged transgene expression in progenitor cells might be desirable for modified cell therapy,the viral promoter-based expression vector tends to promote transgene expression only for a limited period. Here,we examined the ability of cellular promoters from elongation factor-1alpha (EF-1alpha) and ubiquitin C to drive gene expression in hematopoietic TF-1 and mesenchymal progenitor cells. We compared the expression levels and duration of a model gene,interleukin-2,generated by the cellular promoters to those by the cytomegalovirus (CMV) promoter. The EF-1alpha and ubiquitin C promoters drove prolonged gene expression in hematopoietic TF-1 and mesenchymal progenitor cells,whereas the CMV promoter did not. At day 7 after transfection in TF-1 cells,the mRNA expression levels of interleukin-2 driven by the EF-1alpha and ubiquitin C promoters were 118- and 56-fold higher,respectively,than those driven by the CMV promoter. Similarly,in mesenchymal progenitor cells,the expression levels of interleukin-2 driven by the EF-1alpha and ubiquitin C promoters were 98- and 20-fold higher,respectively,than that driven by the CMV promoter-encoding plasmid. Moreover,the ubiquitin C promoter directed higher levels of green fluorescence protein expression in mesenchymal progenitor cells than did the CMV promoter. These results indicate that the use of cellular promoters such as those for EF-1alpha and ubiquitin C might direct prolonged gene expression in hematopoietic and mesenchymal progenitor cells.
View Publication
Expansion of hematopoietic progenitor cell populations in stirred suspension bioreactors of normal human bone marrow cells.
We have investigated the potential of stirred suspension cultures to support hematopoiesis from starting innocula of normal human bone marrow cells. Initial studies showed that the short-term maintenance of both colony-forming cell (CFC) numbers and their precursors,detected as long-term culture-initiating cells (LTC-IC),could be achieved as well in stirred suspension cultures as in static cultures. Neither of these progenitor cell populations was affected in either type of culture when porous microcarriers were added to provide an increased surface for adherent cell attachment. Supplementation of the medium with 10 ng/ml of Steel factor (SF) and 2 ng/ml of interleukin-3 (IL-3) resulted in a significant expansion of LTC-IC,CFC and total cell numbers in stirred cultures. Both the duration and ultimate magnitude of these expansions were correlated with the initial cell density and after 4 weeks the number of LTC-IC and CFC present in stirred cultures initiated with the highest starting cell concentration tested reflected average increases of 7- and 22-fold,respectively,above input values. Stirred suspension cultures offer the combined advantages of homogeneity and lack of dependence on the formation and maintenance of an adherent cell layer. Our results suggest their applicability to the development of scaled-up bioreactor systems for clinical procedures requiring the production of primitive hematopoietic cell populations. In addition,stirred suspension cultures may offer a new tool for the analysis of hematopoietic regulatory mechanisms.
View Publication