Mesenchymal stem/progenitor cells promote the reconstitution of exogenous hematopoietic stem cells in Fancg-/- mice in vivo.
Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by bone marrow failure and complex congenital anomalies. Although mutations in FA genes result in a characteristic phenotype in the hematopoietic stem/progenitor cells (HSPCs),little is known about the consequences of a nonfunctional FA pathway in other stem/progenitor cell compartments. Given the intense functional interactions between HSPCs and the mesenchymal microenvironment,we investigated the FA pathway on the cellular functions of murine mesenchymal stem/progenitor cells (MSPCs) and their interactions with HSPCs in vitro and in vivo. Here,we show that loss of the murine homologue of FANCG (Fancg) results in a defect in MSPC proliferation and in their ability to support the adhesion and engraftment of murine syngeneic HSPCs in vitro or in vivo. Transplantation of wild-type (WT) but not Fancg(-/-) MSPCs into the tibiae of Fancg(-/-) recipient mice enhances the HSPC engraftment kinetics,the BM cellularity,and the number of progenitors per tibia of WT HSPCs injected into lethally irradiated Fancg(-/-) recipients. Collectively,these data show that FA proteins are required in the BM microenvironment to maintain normal hematopoiesis and provide genetic and quantitative evidence that adoptive transfer of WT MSPCs enhances hematopoietic stem cell engraftment.
View Publication
产品类型:
产品号#:
产品名:
文献
Webb CF et al. (MAR 2011)
Molecular and cellular biology 31 5 1041--53
The ARID family transcription factor bright is required for both hematopoietic stem cell and B lineage development.
Bright/Arid3a has been characterized both as an activator of immunoglobulin heavy-chain transcription and as a proto-oncogene. Although Bright expression is highly B lineage stage restricted in adult mice,its expression in the earliest identifiable hematopoietic stem cell (HSC) population suggests that Bright might have additional functions. We showed that textgreater99% of Bright(-/-) embryos die at midgestation from failed hematopoiesis. Bright(-/-) embryonic day 12.5 (E12.5) fetal livers showed an increase in the expression of immature markers. Colony-forming assays indicated that the hematopoietic potential of Bright(-/-) mice is markedly reduced. Rare survivors of lethality,which were not compensated by the closely related paralogue Bright-derived protein (Bdp)/Arid3b,suffered HSC deficits in their bone marrow as well as B lineage-intrinsic developmental and functional deficiencies in their peripheries. These include a reduction in a natural antibody,B-1 responses to phosphocholine,and selective T-dependent impairment of IgG1 class switching. Our results place Bright/Arid3a on a select list of transcriptional regulators required to program both HSC and lineage-specific differentiation.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
文献
S. Biradar et al. ( 2022)
Frontiers in immunology 13 881607
The BLT Humanized Mouse Model as a Tool for Studying Human Gamma Delta T Cell-HIV Interactions In Vivo.
Gamma-delta (??) T cells recognize antigens in a major histocompatibility complex (MHC) independent and have cytotoxic capability. Human immunodeficiency virus (HIV) infection reduces the proportion of the V?2 cell subset compared to the V?1 cell subset of ?? T cells in the blood in most infected individuals,except for elite controllers. The capacity of V?2 T cells to kill HIV-infected targets has been demonstrated in vitro,albeit in vivo confirmatory studies are lacking. Here,we provide the first characterization of ?? T cell-HIV interactions in bone marrow-liver-thymus (BLT) humanized mice and examined the immunotherapeutic potential of V?2 T cells in controlling HIV replication in vivo. We demonstrate a reduced proportion of V?2 T cells and an increased proportion of V?1 T cells in HIV-infected BLT humanized mice,like in HIV-positive individuals. HIV infection in BLT humanized mice also impaired the ex vivo expansion of V?2 T cells,like in HIV-positive individuals. Adoptive transfer of activated V?2 T cells did not control HIV replication during cell-associated HIV transmission in BLT humanized mice but instead exacerbated viremia,suggesting that V?2 T cells may serve as early targets for HIV replication. Our findings demonstrate that BLT humanized mice can model ?? T cell-HIV interactions in vivo.
View Publication
产品类型:
产品号#:
产品名:
文献
Kim H-R et al. ( 2016)
Cell & bioscience 6 1 50
Improved hematopoietic differentiation of human pluripotent stem cells via estrogen receptor signaling pathway.
BACKGROUND Aside from its importance in reproduction,estrogen (E2) is known to regulate the proliferation and differentiation of hematopoietic stem cells in rodents. However,the regulatory role of E2 in human hematopoietic system has not been investigated. The purpose of this study is to investigate the effect of E2 on hematopoietic differentiation using human pluripotent stem cells (hPSCs). RESULTS E2 improved hematopoietic differentiation of hPSCs via estrogen receptor alpha (ER-$$)-dependent pathway. During hematopoietic differentiation of hPSCs,ER-$$ is persistently maintained and hematopoietic phenotypes (CD34 and CD45) were exclusively detected in ER-$$ positive cells. Interestingly,continuous E2 signaling is required to promote hematopoietic output from hPSCs. Supplementation of E2 or an ER-$$ selective agonist significantly increased the number of hemangioblasts and hematopoietic progenitors,and subsequent erythropoiesis,whereas ER-$$ selective agonist did not. Furthermore,ICI 182,780 (ER antagonist) completely abrogated the E2-induced hematopoietic augmentation. Not only from hPSCs but also from human umbilical cord bloods,does E2 signaling potentiate hematopoietic development,suggesting universal function of E2 on hematopoiesis. CONCLUSIONS Our study identifies E2 as positive regulator of human hematopoiesis and suggests that endocrine factors such as E2 influence the behavior of hematopoietic stem cells in various physiological conditions.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Sutherland HJ et al. (AUG 1991)
Blood 78 3 666--72
Differential regulation of primitive human hematopoietic cells in long-term cultures maintained on genetically engineered murine stromal cells.
Various growth factors are known to stimulate both early and late stages of human hematopoietic cell development in semisolid assay systems,but their role as microenvironmental regulators is poorly understood. To address this problem,we developed a novel coculture system in which highly purified primitive human hematopoietic cells were seeded onto an irradiated feeder layer of cells from a murine marrow-derived stromal cell line (M2-10B4) previously engineered by retroviral-mediated gene transfer to produce specific human factors. Effects on cells at very early,intermediate,and late stages of hematopoiesis were then evaluated by assessing the number of clonogenic cell precursors (long-term culture initiating cells [LTC-IC]),clonogenic cells,and mature granulocyte and macrophage progeny present in the cultures after 5 weeks. In the absence of any feeders,cells at all stages of hematopoiesis decreased to very low levels. In contrast,maintenance of LTC-IC was found to be supported by control murine stromal cells as effectively as by standard human marrow adherent layers. The presence of granulocyte colony-stimulating factor (G-CSF) and interleukin-3-producing M2-10B4 cells in combination was able to further enhance the maintenance and early differentiation of these cells without a decline in their proliferative potential as measured by the clonogenic output per LTC-IC. However,this effect was lost if granulocyte-macrophage CSF (GM-CSF)-producing feeders were also present. On the other hand,in the presence of GM-CSF-producing feeders,the output of mature granulocytes and macrophages increased 20-fold. These findings show that it is possible to selectively improve the maintenance of very primitive human hematopoietic cells in vitro or their output of mature progeny by appropriate manipulation of the long-term marrow culture system. Further exploitation of this approach should facilitate investigation of the mechanisms operative within the human marrow microenvironment in vivo and the design of protocols for in vitro manipulation of human marrow for future therapeutic applications.
View Publication
产品类型:
产品号#:
05150
05350
产品名:
MyeloCult™H5100
文献
Liu H and Roy K ( )
Tissue engineering 11 1-2 319--30
Stem cell-based tissue engineering is a promising technology in the effort to create functional tissues of choice. To establish an efficient approach for generating hematopoietic cell lineages directly from embryonic stem (ES) cells and to study the effects of three-dimensional (3D) biomaterials on ES cell differentiation,we cultured mouse ES cells on 3D,highly porous,biomimetic scaffolds. Cell differentiation was evaluated by microscopy and flow cytometry analysis with a variety of hematopoiesis- specific markers. Our data indicate that ES cells differentiated on porous 3D scaffold structures developed embryoid bodies (EBs) similar to those in traditional two-dimensional (2D) cultures; however,unlike 2D differentiation,these EBs integrated with the scaffold and appeared embedded in a network of extracellular matrix. Most significantly,the efficiency of hematopoietic precursor cell (HPC) generation on 3D,as indicated by the expression of various HPC-specific surface markers (CD34,Sca-1,Flk-1,and c-Kit) and colony-forming cell (CFC) assays,was reproducibly increased (about 2-fold) over their 2D counterparts. Comparison of static and dynamic 3D cultures demonstrated that spinner flask technology also contributed to the higher hematopoietic differentiation efficiency of ES cells seeded on scaffolds. Continued differentiation of 3D-derived HPCs into the myeloid lineage demonstrated increased efficiency (2-fold) of generating myeloid compared with differentiation from 2D-derived HPCs.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
文献
Miyake N et al. (MAR 2006)
Stem cells (Dayton,Ohio) 24 3 653--61
HOXB4-induced self-renewal of hematopoietic stem cells is significantly enhanced by p21 deficiency.
Enforced expression of the HOXB4 transcription factor and downregulation of p21(Cip1/Waf) (p21) can each independently increase proliferation of murine hematopoietic stem cells (HSCs). We asked whether the increase in HSC self-renewal generated by overexpression of HOXB4 is enhanced in p21-deficient HSCs. HOXB4 was overexpressed in hematopoietic cells from wild-type (wt) and p21-/- mice. Bone marrow (BM) cells were transduced with a retroviral vector expressing HOXB4 together with GFP (MIGB4),or a control vector containing GFP alone (MIG) and maintained in liquid culture for up to 11 days. At day 11 of the expansion culture,the number of primary CFU-GM (colony-forming unit granulocyte-macrophage) colonies and the repopulating ability were significantly increased in MIGB4 p21-/- BM (p21B4) cells compared with MIGB4-transduced wt BM (wtB4) cells. To test proliferation of HSCs in vivo,we performed competitive repopulation experiments and obtained significantly higher long-term engraftment of expanded p21B4 cells compared with wtB4 cells. The 5-day expansion of p21B4 HSCs generated 100-fold higher numbers of competitive repopulating units compared with wtMIG and threefold higher numbers compared with wtB4. The findings demonstrate that increased expression of HOXB4,in combination with suppression of p21 expression,could be a useful strategy for effective and robust expansion of HSCs.
View Publication
产品类型:
产品号#:
03534
产品名:
MethoCult™GF M3534
文献
Boitano AE et al. (SEP 2010)
Science (New York,N.Y.) 329 5997 1345--8
Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells.
Although practiced clinically for more than 40 years,the use of hematopoietic stem cell (HSC) transplants remains limited by the ability to expand these cells ex vivo. An unbiased screen with primary human HSCs identified a purine derivative,StemRegenin 1 (SR1),that promotes the ex vivo expansion of CD34+ cells. Culture of HSCs with SR1 led to a 50-fold increase in cells expressing CD34 and a 17-fold increase in cells that retain the ability to engraft immunodeficient mice. Mechanistic studies show that SR1 acts by antagonizing the aryl hydrocarbon receptor (AHR). The identification of SR1 and AHR modulation as a means to induce ex vivo HSC expansion should facilitate the clinical use of HSC therapy.
View Publication
产品类型:
产品号#:
72342
72344
72352
72354
72732
72734
产品名:
StemRegenin 1
StemRegenin 1
StemRegenin 1(盐酸盐)
StemRegenin 1(盐酸盐)
CH223191
CH223191
文献
Tzeng Y-S et al. (JAN 2011)
Blood 117 2 429--39
Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression.
The C-X-C-type chemokine Cxcl12,also known as stromal cell-derived factor-1,plays a critical role in hematopoiesis during fetal development. However,the functional requirement of Cxcl12 in the adult hematopoietic stem/progenitor cell (HSPC) regulation was still unclear. In this report,we developed a murine Cxcl12 conditional deletion model in which the target gene can be deleted at the adult stage. We found that loss of stroma-secreted Cxcl12 in the adult led to expansion of the HSPC population as well as a reduction in long-term quiescent stem cells. In Cxcl12-deficient bone marrow,HSPCs were absent along the endosteal surface,and blood cell regeneration occurred predominantly in the perisinusoidal space after 5-fluorouracil myelosuppression challenge. Our results indicate that Cxcl12 is required for HSPC homeostasis regulation and is an important factor for osteoblastic niche organization in adult stage bone marrow.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
文献
Lu M et al. (AUG 2009)
Experimental hematology 37 8 924--36
Enhanced generation of hematopoietic cells from human hepatocarcinoma cell-stimulated human embryonic and induced pluripotent stem cells
Objective: Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) constitute unique sources of pluripotent cells,although the molecular mechanisms involved in their differentiation into specific lineages are just beginning to be defined. Here we evaluated the ability of MEDII (medium conditioned by HepG2 cells,a human hepatocarcinoma cell line) to selectively enhance generation of mesodermal derivatives,including hematopoietic cells,from hESCs and hiPSCs. Materials and Methods: Test cells were exposed to MEDII prior to being placed in conditions that promote embryoid body (EB) formation. Hematopoietic activity was measured by clonogenic assays,flow cytometry,quantitative real-time polymerase chain reaction of specific transcript complementary DNAs and the ability of cells to repopulate sublethally irradiated nonobese diabetic/severe combined immunodeficient interleukin-2 receptor ??-chain-null mice for almost 1 year. Results: Exposure of both hESCs and hiPSCs to MEDII induced a rapid and preferential differentiation of hESCs into mesodermal elements. Subsequently produced EBs showed a further enhanced expression of transcripts characteristic of multiple mesodermal lineages,and a concurrent decrease in endodermal and ectodermal cell transcripts. Frequency of all types of clonogenic hematopoietic progenitors in subsequently derived EBs was also increased. In vivo assays of MEDII-treated hESC-derived EBs also showed they contained cells able to undertake low-level but longterm multilineage repopulation of primary and secondary nonobese diabetic/severe combined immunodeficient interleukin-2 receptor ??-chain-null mice. Conclusions: MEDII treatment of hESCs and hiPSCs alike selectively enhances their differentiation into mesodermal cells and allows subsequent generation of detectable levels of hematopoietic progenitors with in vitro and in vivo differentiating activity. ?? 2009 ISEH - Society for Hematology and Stem Cells.
View Publication
产品类型:
产品号#:
04230
36254
85850
85857
产品名:
MethoCult™H4230
DMEM/F-12 with 15 mM HEPES
mTeSR™1
mTeSR™1
文献
Petzer AL et al. (FEB 1996)
Proceedings of the National Academy of Sciences of the United States of America 93 4 1470--4
Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in defined medium.
A major goal of experimental and clinical hematology is the identification of mechanisms and conditions that support the expansion of transplantable hematopoietic stem cells. In normal marrow,such cells appear to be identical to (or represent a subset of) a population referred to as long-term-culture-initiating cells (LTC-ICs) so-named because of their ability to produce colony-forming cell (CFC) progeny for textgreater or = 5 weeks when cocultured with stromal fibroblasts. Some expansion of LTC-ICs in vitro has recently been described,but identification of the factors required and whether LTC-IC self-renewal divisions are involved have remained unresolved issues. To address these issues,we examined the maintenance and/or generation of LTC-ICs from single CD34+ CD38- cells cultured for variable periods under different culture conditions. Analysis of the progeny obtained from cultures containing a feeder layer of murine fibroblasts engineered to produce steel factor,interleukin (IL)-3,and granulocyte colony-stimulating factor showed that approximately 20% of the input LTC-ICs (representing approximately 2% of the original CD34+ CD38- cells) executed self-renewal divisions within a 6-week period. Incubation of the same CD34+ CD38- starting populations as single cells in a defined (serum free) liquid medium supplemented with Flt-3 ligand,steel factor,IL-3,IL-6,granulocyte colony-stimulating factor,and nerve growth factor resulted in the proliferation of initial cells to produce clones of from 4 to 1000 cells within 10 days,approximately 40% of which included textgreater or = 1 LTC-IC. In contrast,in similar cultures containing methylcellulose,input LTC-ICs appeared to persist but not divide. Overall the LTC-IC expansion in the liquid cultures was 30-fold in the first 10 days and 50-fold by the end of another 1-3 weeks. Documentation of human LTC-IC self-renewal in vitro and identification of defined conditions that permit their extensive and rapid amplification should facilitate analysis of the molecular mechanisms underlying these processes and their exploitation for a variety of therapeutic applications.
View Publication
产品类型:
产品号#:
04436
04064
04100
04230
04236
04431
04434
04444
05150
04464
04531
04535
04545
04536
04564
04035
04330
04034
04044
04435
04445
04534
04544
产品名:
MethoCult™ SF H4436
MethoCult™ H4034 Optimum启动试剂盒套装
MethoCult™ H4100
MethoCult™H4230
MethoCult™SF H4236
MethoCult™H4431
MethoCult™H4434经典
MethoCult™H4434经典
MyeloCult™H5100
MethoCult™ H4434 Classic启动试剂盒套装
MethoCult™H4531
MethoCult™H4535富集无EPO
MethoCult™ H4535 Enriched,不含EPO
MethoCult™ SF H4536
入门套件MethoCult™H4534经典无EPO
MethoCult™H4035 Optimum无EPO
MethoCult™H4330
MethoCult™H4034 Optimum
MethoCult™H4034 Optimum
MethoCult™H4435富集
MethoCult™H4435富集
MethoCult™H4534经典无EPO
MethoCult™H4534经典无EPO
文献
Zhang CC and Lodish HF (JUN 2005)
Blood 105 11 4314--20
Murine hematopoietic stem cells change their surface phenotype during ex vivo expansion.
Ex vivo expansion of hematopoietic stem cells (HSCs) is important for many clinical applications,and knowledge of the surface phenotype of ex vivo-expanded HSCs will be critical to their purification and analysis. Here,we developed a simple culture system for bone marrow (BM) HSCs using low levels of stem cell factor (SCF),thrombopoietin (TPO),insulin-like growth factor 2 (IGF-2),and fibroblast growth factor-1 (FGF-1) in serum-free medium. As measured by competitive repopulation analyses,there was a more than 20-fold increase in numbers of long-term (LT)-HSCs after a 10-day culture of total BM cells. Culture of BM side population" (SP) cells�
View Publication