Moreau-Gaudry F et al. (NOV 2001)
Blood 98 9 2664--72
High-level erythroid-specific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors.
Use of oncoretroviral vectors in gene therapy for hemoglobinopathies has been impeded by low titer vectors,genetic instability,and poor expression. Fifteen self- inactivating (SIN) lentiviral vectors using 4 erythroid promoters in combination with 4 erythroid enhancers with or without the woodchuck hepatitis virus postregulatory element (WPRE) were generated using the enhanced green fluorescent protein as a reporter gene. Vectors with high erythroid-specific expression in cell lines were tested in primary human CD34(+) cells and in vivo in the murine bone marrow (BM) transplantation model. Vectors containing the ankyrin-1 promoter showed high-level expression and stable proviral transmission. Two vectors containing the ankyrin-1 promoter and 2 erythroid enhancers (HS-40 plus GATA-1 or HS-40 plus 5-aminolevulinate synthase intron 8 [I8] enhancers) and WPRE expressed at levels higher than the HS2/beta-promoter vector in bulk unilineage erythroid cultures and individual erythroid blast-forming units derived from human BM CD34(+) cells. Sca1(+)/lineage(-) Ly5.1 mouse hematopoietic cells,transduced with these 2 ankyrin-1 promoter vectors,were injected into lethally irradiated Ly5.2 recipients. Eleven weeks after transplantation,high-level expression was seen from both vectors in blood (63%-89% of red blood cells) and erythroid cells in BM (70%-86% engraftment),compared with negligible expression in myeloid and lymphoid lineages in blood,BM,spleen,and thymus (0%-4%). The I8/HS-40-containing vector encoding a hybrid human beta/gamma-globin gene led to 43% to 113% human gamma-globin expression/copy of the mouse alpha-globin gene. Thus,modular use of erythroid-specific enhancers/promoters and WPRE in SIN-lentiviral vectors led to identification of high-titer,stably transmitted vectors with high-level erythroid-specific expression for gene therapy of red cell diseases.
View Publication
产品类型:
产品号#:
产品名:
文献
Petzer AL et al. (JUN 1996)
The Journal of experimental medicine 183 6 2551--8
Differential cytokine effects on primitive (CD34+CD38-) human hematopoietic cells: novel responses to Flt3-ligand and thrombopoietin.
A high proportion of the CD34+CD38- cells in normal human marrow are defined as long-term culture-initiating cells (LTC-IC) because they can proliferate and differentiate when co-cultured with cytokine-producing stromal feeder layers. In contrast,very few CD34+CD38- cells will divide in cytokine-containing methylcellulose and thus are not classifiable as direct colony-forming cells (CFC),although most can proliferate in serum-free liquid cultures containing certain soluble cytokines. Analysis of the effects of 16 cytokines on CD34+CD38- cells in the latter type of culture showed that Flt3-ligand (FL),Steel factor (SF),and interleukin (IL)-3 were both necessary and sufficient to obtain an approximately 30-fold amplification of the input LTC-IC population within 10 d. As single factors,only FL and thrombopoietin (TPO) stimulated a net increase in LTC-IC within 10 d. Interestingly,a significantly increased proportion of the CFC produced from the TPO-amplified LTC-IC were erythroid. Increases in the number of directly detectable CFC of textgreater 500-fold were also obtainable within 10 d in serum-free cultures of CD34+CD38- cells. However,this required the presence of IL-6 and/or granulocyte/colony-stimulating factor and/or nerve growth factor beta in addition to FL,SF,and IL-3. Also,for this response,the most potent single-acting factor tested was IL-3,not FL. Identification of cytokine combinations that differentially stimulate primitive human hematopoietic cell self-renewal and lineage determination should facilitate analysis of the intracellular pathways that regulate these decisions as well as the development of improved ex vivo expansion and gene transfer protocols.
View Publication
产品类型:
产品号#:
05150
05350
09300
09500
09850
产品名:
MyeloCult™H5100
含有10% 牛血清白蛋白(BSA)的 Iscove's MDM
BIT 9500血清替代物
文献
Nejadnik H et al. (APR 2015)
Stem Cell Reviews and Reports 11 2 242--253
Improved Approach for Chondrogenic Differentiation of Human Induced Pluripotent Stem Cells
Human induced pluripotent stem cells (hiPSCs) have demonstrated great potential for hyaline cartilage regeneration. However,current approaches for chondrogenic differentiation of hiPSCs are complicated and inefficient primarily due to intermediate embryoid body formation,which is required to generate endodermal,ectodermal,and mesodermal cell lineages. We report a new,straightforward and highly efficient approach for chondrogenic differentiation of hiPSCs,which avoids embryoid body formation. We differentiated hiPSCs directly into mesenchymal stem /stromal cells (MSC) and chondrocytes. hiPSC-MSC-derived chondrocytes showed significantly increased Col2A1,GAG,and SOX9 gene expression compared to hiPSC-MSCs. Following transplantation of hiPSC-MSC and hiPSC-MSC-derived chondrocytes into osteochondral defects of arthritic joints of athymic rats,magnetic resonance imaging studies showed gradual engraftment,and histological correlations demonstrated hyaline cartilage matrix production. Results present an efficient and clinically translatable approach for cartilage tissue regeneration via patient-derived hiPSCs,which could improve cartilage regeneration outcomes in arthritic joints.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Tohyama S et al. (APR 2016)
Cell Metabolism 23 4 663--674
Glutamine Oxidation Is Indispensable for Survival of Human Pluripotent Stem Cells
Summary Human pluripotent stem cells (hPSCs) are uniquely dependent on aerobic glycolysis to generate ATP. However,the importance of oxidative phosphorylation (OXPHOS) has not been elucidated. Detailed amino acid profiling has revealed that glutamine is indispensable for the survival of hPSCs. Under glucose- and glutamine-depleted conditions,hPSCs quickly died due to the loss of ATP. Metabolome analyses showed that hPSCs oxidized pyruvate poorly and that glutamine was the main energy source for OXPHOS. hPSCs were unable to utilize pyruvate-derived citrate due to negligible expression of aconitase 2 (ACO2) and isocitrate dehydrogenase 2/3 (IDH2/3) and high expression of ATP-citrate lyase. Cardiomyocytes with mature mitochondria were not able to survive without glucose and glutamine,although they were able to use lactate to synthesize pyruvate and glutamate. This distinguishing feature of hPSC metabolism allows preparation of clinical-grade cell sources free of undifferentiated hPSCs,which prevents tumor formation during stem cell therapy.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Zakikhani M et al. ( 2006)
Cancer research 66 21 10269--10273
Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells.
Recent population studies provide clues that the use of metformin may be associated with reduced incidence and improved prognosis of certain cancers. This drug is widely used in the treatment of type 2 diabetes,where it is often referred to as an insulin sensitizer" because it not only lowers blood glucose but also reduces the hyperinsulinemia associated with insulin resistance. As insulin and insulin-like growth factors stimulate proliferation of many normal and transformed cell types�
View Publication
产品类型:
产品号#:
73252
73254
产品名:
Metformin (Hydrochloride)
二甲双胍 (Hydrochloride)
文献
Harry RA et al. (NOV 2010)
Annals of the rheumatic diseases 69 11 2042--50
Generation and characterisation of therapeutic tolerogenic dendritic cells for rheumatoid arthritis.
OBJECTIVES: Tolerogenic dendritic cells (tolDCs) constitute a promising experimental treatment for targeting autoreactive T cells in autoimmune diseases,including rheumatoid arthritis (RA). The authors' goal is to bring tolDC therapy for RA to the clinic. Here the authors address key translational issues related to the manufacturing of tolDCs from RA patients with current good manufacturing practice (cGMP)-compliant reagents,the stability of tolDCs,and the selection of suitable quality control markers. METHODS: Human monocyte-derived tolDCs were established from RA patients and healthy controls (HCs) using the immunosuppressive drugs dexamethasone and vitamin D₃,and the cGMP-grade immunomodulator,monophosphoryl lipid A,in the cGMP-compliant medium,CellGroDC. The functionality of tolDCs and tolDC-modulated autologous CD4 T cells was determined by flow cytometry,[³H]thymidine incorporation and ELISA. RESULTS: Clinical-grade tolDCs established from patients with RA exhibit a typical tolerogenic phenotype of reduced costimulatory molecules,low production of proinflammatory cytokines and impaired stimulation of autologous antigen-specific T cells,comparable to HC tolDCs. Toll-like receptor 2 (TLR-2) was highly expressed by tolDCs but not mature DCs. Furthermore,tolDCs suppressed mature DC-induced T cell proliferation,interferon γ and interleukin 17 production,and rendered T cells hyporesponsive to further stimulation. Importantly,tolDCs were phenotypically stable in the absence of immunosuppressive drugs and were refractory to further challenge with proinflammatory mediators. CONCLUSIONS: tolDCs established from patients with RA are comparable to those derived from healthy donors. TLR-2 was identified as an ideal marker for quality control of tolDCs. Potently tolerogenic and highly stable,these tolDCs are a promising cellular therapeutic for tailored immunomodulation in the treatment of RA.
View Publication
产品类型:
产品号#:
15022
15062
产品名:
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD4+ T细胞富集抗体混合物
文献
Philonenko ES et al. (JAN 2011)
International review of cell and molecular biology 292 153--96
Current progress and potential practical application for human pluripotent stem cells.
Pluripotent stem cells are able to give rise to all cell types of the organism. There are two sources for human pluripotent stem cells: embryonic stem cells (ESCs) derived from surplus blastocysts created for in vitro fertilization and induced pluripotent stem cells (iPSCs) generated by reprogramming of somatic cells. ESCs have been an area of intense research during the past decade,and two clinical trials have been recently approved. iPSCs were created only recently,and most of the research has been focused on the iPSC generation protocols and investigation of mechanisms of direct reprogramming. The iPSC technology makes possible to derive pluripotent stem cells from any patient. However,there are a number of hurdles to be overcome before iPSCs will find a niche in practice. In this review,we discuss differences and similarities of the two pluripotent cell types and assess prospects for application of these cells in biomedicine.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Re A et al. (NOV 2015)
Endocrine
Anacardic acid and thyroid hormone enhance cardiomyocytes production from undifferentiated mouse ES cells along functionally distinct pathways.
The epigenetics of early commitment to embryonal cardiomyocyte is poorly understood. In this work,we compared the effect of thyroid hormone and that of anacardic acid,a naturally occurring histone acetylase inhibitor,or both in combination,on mouse embryonic stem cells (mES) differentiating into embryonal cardiomyocyte by embryoid bodies (EBs) formation. Although the results indicated that anacardic acid (AA) and thyroid hormone were both efficient in promoting cardiomyocyte differentiation,we noticed that a transient exposure of mES to AA alone was sufficient to enlarge the beating areas of EBs compared to those of untreated controls. This effect was associated with changes in the chromatin structure at the promoters of specific cardiomyogenic genes. Among them,a rapid induction of the transcription factor Castor 1 (CASZ1),important for cardiomyocytes differentiation and maturation during embryonic development,was observed in the presence of AA. In contrast,thyroid hormone (T 3) was more effective in stimulating spontaneous firing,thus suggesting a role in the production of a population of cardiomyocyte with pacemaker properties. In conclusion,AA and thyroid hormone both enhanced cardiomyocyte formation along in apparently distinct pathways.
View Publication
产品类型:
产品号#:
产品名:
文献
Levi B et al. (DEC 2012)
Proceedings of the National Academy of Sciences of the United States of America 109 50 20379--84
In vivo directed differentiation of pluripotent stem cells for skeletal regeneration.
Pluripotent cells represent a powerful tool for tissue regeneration,but their clinical utility is limited by their propensity to form teratomas. Little is known about their interaction with the surrounding niche following implantation and how this may be applied to promote survival and functional engraftment. In this study,we evaluated the ability of an osteogenic microniche consisting of a hydroxyapatite-coated,bone morphogenetic protein-2-releasing poly-L-lactic acid scaffold placed within the context of a macroenvironmental skeletal defect to guide in vivo differentiation of both embryonic and induced pluripotent stem cells. In this setting,we found de novo bone formation and participation by implanted cells in skeletal regeneration without the formation of a teratoma. This finding suggests that local cues from both the implanted scaffold/cell micro- and surrounding macroniche may act in concert to promote cellular survival and the in vivo acquisition of a terminal cell fate,thereby allowing for functional engraftment of pluripotent cells into regenerating tissue.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Liu L et al. (AUG 2014)
Biomaterials 35 24 6259--6267
Nanofibrous gelatin substrates for long-term expansion of human pluripotent stem cells.
Nanofibrous gelatin substrates are suited for long-term expansion of human pluripotent stem cells (hPSCs) under feeder- and serum-free culture conditions. A combinatorial library with different sets of processing parameters was established to assess the culture performance of hPSCs on nanofibrous substrates in terms of cell adhesion and growth rate,using Matrigel as control. Then,the optimal conditions were applied to long-term expansion of hPSCs with several cell lines,showing a maintained pluripotency over more than 20 passages without introducing any abnormal chromosome. In addition,this approach allowed us to avoid enzymatic disassociation and mechanic cutting during passages,thereby promoting a better hPSC culture and long-term expansion. ?? 2014 Elsevier Ltd.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Joulia R et al. (JAN 2015)
Nature communications 6 6174
Mast cells form antibody-dependent degranulatory synapse for dedicated secretion and defence.
Mast cells are tissue-resident immune cells that play a key role in inflammation and allergy. Here we show that interaction of mast cells with antibody-targeted cells induces the polarized exocytosis of their granules resulting in a sustained exposure of effector enzymes,such as tryptase and chymase,at the cell-cell contact site. This previously unidentified mast cell effector mechanism,which we name the antibody-dependent degranulatory synapse (ADDS),is triggered by both IgE- and IgG-targeted cells. ADDSs take place within an area of cortical actin cytoskeleton clearance in the absence of microtubule organizing centre and Golgi apparatus repositioning towards the stimulating cell. Remarkably,IgG-mediated degranulatory synapses also occur upon contact with opsonized Toxoplasma gondii tachyzoites resulting in tryptase-dependent parasite death. Our results broaden current views of mast cell degranulation by revealing that human mast cells form degranulatory synapses with antibody-targeted cells and pathogens for dedicated secretion and defence.
View Publication
产品类型:
产品号#:
09600
09650
60012
60012FI.1
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
抗人CD32抗体, 克隆号IV.3
抗人CD32抗体,克隆IV.3,FITC
文献
Aikawa N et al. ( 2015)
Biological & pharmaceutical bulletin 38 7 1070--1075
A Simple Protocol for the Myocardial Differentiation of Human iPS Cells.
We have developed a simple protocol for inducing the myocardial differentiation of human induced pluripotent stem (iPS) cells. Human iPS cell-derived embryonic bodies (EBs) were treated with a combination of activin-A,bone morphogenetic protein-4 and wnt-3a for one day in serum-free suspension culture,and were subsequently treated with noggin for three days. Thereafter,the EBs were subjected to adherent culture in media with 5% serum. All EBs were differentiated into spontaneously beating EBs,which were identified by the presence of striated muscles in transmission electron microscopy and the expression of the specific cardiomyocyte markers,NKX2-5 and TNNT2. The beating rate of the beating EBs was decreased by treatment with a rapidly activating delayed rectifier potassium current (Ikr) channel blocker,E-4031,an Ikr trafficking inhibitor,pentamidin,and a slowly activating delayed rectifier potassium current (Iks) channel blocker,chromanol 293B,and was increased by treatment with a beta-receptor agonist,isoproterenol. At a low concentration,verapamil,a calcium channel blocker,increased the beating rate of the beating EBs,while a high concentration decreased this rate. These findings suggest that the spontaneously beating EBs were myocardial cell clusters. This simple protocol for myocardial differentiation would be useful in providing a sufficient number of the beating myocardial cell clusters for studies requiring human myocardium.
View Publication