M. S. Fernandopulle et al. (JUN 2018)
Current protocols in cell biology 79 1 e51
Transcription Factor-Mediated Differentiation of Human iPSCs into Neurons.
Accurate modeling of human neuronal cell biology has been a long-standing challenge. However,methods to differentiate human induced pluripotent stem cells (iPSCs) to neurons have recently provided experimentally tractable cell models. Numerous methods that use small molecules to direct iPSCs into neuronal lineages have arisen in recent years. Unfortunately,these methods entail numerous challenges,including poor efficiency,variable cell type heterogeneity,and lengthy,expensive differentiation procedures. We recently developed a new method to generate stable transgenic lines of human iPSCs with doxycycline-inducible transcription factors at safe-harbor loci. Using a simple two-step protocol,these lines can be inducibly differentiated into either cortical (i3 Neurons) or lower motor neurons (i3 LMN) in a rapid,efficient,and scalable manner (Wang et al.,2017). In this manuscript,we describe a set of protocols to assist investigators in the culture and genetic engineering of iPSC lines to enable transcription factor-mediated differentiation of iPSCs into i3 Neurons or i3 LMNs,and we present neuronal culture conditions for various experimental applications. {\textcopyright} 2018 by John Wiley & Sons,Inc.
View Publication
产品类型:
产品号#:
07920
07922
05790
05792
05793
05794
05795
产品名:
ACCUTASE™
ACCUTASE™
BrainPhys™神经元介质
BrainPhys™神经元培养基和SM1试剂盒
BrainPhys™神经元培养基N2-A & SM1试剂盒
BrainPhys™初级神经元试剂盒
BrainPhys™hPSC神经元试剂盒
Reference
Lin T et al. (NOV 2009)
Nature methods 6 11 805--8
A chemical platform for improved induction of human iPSCs.
The slow kinetics and low efficiency of reprogramming methods to generate human induced pluripotent stem cells (iPSCs) impose major limitations on their utility in biomedical applications. Here we describe a chemical approach that dramatically improves (200-fold) the efficiency of iPSC generation from human fibroblasts,within seven days of treatment. This will provide a basis for developing safer,more efficient,nonviral methods for reprogramming human somatic cells.
View Publication
产品类型:
产品号#:
72182
72184
72232
72234
72252
72254
产品名:
PD0325901
PD0325901
SB431542(水合物)
SB431542(水合物)
Thiazovivin
Thiazovivin
Reference
Liu G-H et al. (APR 2011)
Nature 472 7342 221--5
Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome.
Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal human premature ageing disease,characterized by premature arteriosclerosis and degeneration of vascular smooth muscle cells (SMCs). HGPS is caused by a single point mutation in the lamin A (LMNA) gene,resulting in the generation of progerin,a truncated splicing mutant of lamin A. Accumulation of progerin leads to various ageing-associated nuclear defects including disorganization of nuclear lamina and loss of heterochromatin. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts obtained from patients with HGPS. HGPS-iPSCs show absence of progerin,and more importantly,lack the nuclear envelope and epigenetic alterations normally associated with premature ageing. Upon differentiation of HGPS-iPSCs,progerin and its ageing-associated phenotypic consequences are restored. Specifically,directed differentiation of HGPS-iPSCs to SMCs leads to the appearance of premature senescence phenotypes associated with vascular ageing. Additionally,our studies identify DNA-dependent protein kinase catalytic subunit (DNAPKcs,also known as PRKDC) as a downstream target of progerin. The absence of nuclear DNAPK holoenzyme correlates with premature as well as physiological ageing. Because progerin also accumulates during physiological ageing,our results provide an in vitro iPSC-based model to study the pathogenesis of human premature and physiological vascular ageing.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Reference
H. Poulin et al. (aug 2019)
Biochemical and biophysical research communications 516 1 222--228
Differentiation of lymphoblastoid-derived iPSCs into functional cardiomyocytes, neurons and myoblasts.
Human induced pluripotent stem cells (hiPSCs) are a valuable tool for investigating complex cellular and molecular events that occur in several human diseases. Importantly,the ability to differentiate hiPSCs into any human cell type provides a unique way for investigating disease mechanisms such as complex mental health diseases. The in vitro transformation of human lymphocytes into lymphoblasts (LCLs) using the Epstein-Barr virus (EBV) has been the main method for generating immortalized human cell lines for half a century. However,the derivation of iPSCs from LCLs has emerged as an alternative source from which these cell lines can be generated. We show that iPSCs derived from LCLs using the Sendai virus procedure can be successfully differentiated into cardiomyocytes,neurons,and myotubes that express neuron- and myocyte-specific markers. We further show that these cardiac and neuronal cells are functional and generate action potentials that are required for cell excitability. We conclude that the ability to differentiate LCLs into neurons and myocytes will increase the use of LCLs in the future as a potential source of cells for modelling a number of diseases.
View Publication
产品类型:
产品号#:
05010
产品名:
STEMdiff™心室心肌细胞分化试剂盒
Reference
Merling RK et al. (APR 2013)
Blood 121 14 e98--107
Transgene-free iPSCs generated from small volume peripheral blood nonmobilized CD34+ cells.
Demonstrates efficient reprogramming of iPS cells from CD34+ stem cells enriched from a small volume of peripheral blood.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Reference
Koh S and Piedrahita JA ( 2015)
1330 69--78
Generation of induced pluripotent stem cells (iPSCs) from adult canine fibroblasts
Induced pluripotent stem cells hold great potential in regenerative medicine as it enables to generate pluripotent stem cells from any available cell types. Ectopic expression of four transcription factors (Oct4,Sox2,Klf4,and c-Myc) can reprogram fibroblasts directly to pluripotency as shown in multiple species. Here,we describe detailed protocols for generation of iPSCs from adult canine fibroblasts. Robust canine iPSCs will provide powerful tools not only to study human diseases,but also for the development of therapeutic approaches.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Reference
Mandegar MA et al. (APR 2016)
Cell Stem Cell 18 4 541--553
CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs
Developing technologies for efficient and scalable disruption of gene expression will provide powerful tools for studying gene function,developmental pathways,and disease mechanisms. Here,we develop clustered regularly interspaced short palindromic repeat interference (CRISPRi) to repress gene expression in human induced pluripotent stem cells (iPSCs). CRISPRi,in which a doxycycline-inducible deactivated Cas9 is fused to a KRAB repression domain,can specifically and reversibly inhibit gene expression in iPSCs and iPSC-derived cardiac progenitors,cardiomyocytes,and T lymphocytes. This gene repression system is tunable and has the potential to silence single alleles. Compared with CRISPR nuclease (CRISPRn),CRISPRi gene repression is more efficient and homogenous across cell populations. The CRISPRi system in iPSCs provides a powerful platform to perform genome-scale screens in a wide range of iPSC-derived cell types,dissect developmental pathways,and model disease.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07920
85850
85857
85870
85875
产品名:
ACCUTASE™
mTeSR™1
mTeSR™1
Reference
Qu Y et al. (AUG 2016)
Scientific reports 6 32007
Transcriptome and proteome characterization of surface ectoderm cells differentiated from human iPSCs.
Surface ectoderm (SE) cells give rise to structures including the epidermis and ectodermal associated appendages such as hair,eye,and the mammary gland. In this study,we validate a protocol that utilizes BMP4 and the $$-secretase inhibitor DAPT to induce SE differentiation from human induced pluripotent stem cells (hiPSCs). hiPSC-differentiated SE cells expressed markers suggesting their commitment to the SE lineage. Computational analyses using integrated quantitative transcriptomic and proteomic profiling reveal that TGF$$ superfamily signaling pathways are preferentially activated in SE cells compared with hiPSCs. SE differentiation can be enhanced by selectively blocking TGF$$-RI signaling. We also show that SE cells and neural ectoderm cells possess distinct gene expression patterns and signaling networks as indicated by functional Ingenuity Pathway Analysis. Our findings advance current understanding of early human SE cell development and pave the way for modeling of SE-derived tissue development,studying disease pathogenesis,and development of regenerative medicine approaches.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Reference
Compagnucci C et al. (DEC 2016)
Molecular and cellular neurosciences 77 113--124
Cytoskeletal dynamics during in vitro neurogenesis of induced pluripotent stem cells (iPSCs).
Patient-derived induced pluripotent stem cells (iPSCs) provide a novel tool to investigate the pathophysiology of poorly known diseases,in particular those affecting the nervous system,which has been difficult to study for its lack of accessibility. In this emerging and promising field,recent iPSCs studies are mostly used as proof-of-principle" experiments that are confirmatory of previous findings obtained from animal models and postmortem human studies; its promise as a discovery tool is just beginning to be realized. A recent number of studies point to the functional similarities between in vitro neurogenesis and in vivo neuronal development�
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Reference
Zhong X et al. (JUN 2014)
Nature communications 5 May 4047
Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs.
Many forms of blindness result from the dysfunction or loss of retinal photoreceptors. Induced pluripotent stem cells (iPSCs) hold great potential for the modelling of these diseases or as potential therapeutic agents. However,to fulfill this promise,a remaining challenge is to induce human iPSC to recreate in vitro key structural and functional features of the native retina,in particular the presence of photoreceptors with outer-segment discs and light sensitivity. Here we report that hiPSC can,in a highly autonomous manner,recapitulate spatiotemporally each of the main steps of retinal development observed in vivo and form three-dimensional retinal cups that contain all major retinal cell types arranged in their proper layers. Moreover,the photoreceptors in our hiPSC-derived retinal tissue achieve advanced maturation,showing the beginning of outer-segment disc formation and photosensitivity. This success brings us one step closer to the anticipated use of hiPSC for disease modelling and open possibilities for future therapies.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Reference
Yokota M et al. (JAN 2017)
Cell death & disease 8 1 e2551
Mitochondrial respiratory dysfunction disturbs neuronal and cardiac lineage commitment of human iPSCs.
Mitochondrial diseases are genetically heterogeneous and present a broad clinical spectrum among patients; in most cases,genetic determinants of mitochondrial diseases are heteroplasmic mitochondrial DNA (mtDNA) mutations. However,it is uncertain whether and how heteroplasmic mtDNA mutations affect particular cellular fate-determination processes,which are closely associated with the cell-type-specific pathophysiology of mitochondrial diseases. In this study,we established two isogenic induced pluripotent stem cell (iPSC) lines each carrying different proportions of a heteroplasmic m.3243A>G mutation from the same patient; one exhibited apparently normal and the other showed most likely impaired mitochondrial respiratory function. Low proportions of m.3243A>G exhibited no apparent molecular pathogenic influence on directed differentiation into neurons and cardiomyocytes,whereas high proportions of m.3243A>G showed both induced neuronal cell death and inhibited cardiac lineage commitment. Such neuronal and cardiac maturation defects were also confirmed using another patient-derived iPSC line carrying quite high proportion of m.3243A>G. In conclusion,mitochondrial respiratory dysfunction strongly inhibits maturation and survival of iPSC-derived neurons and cardiomyocytes; our presenting data also suggest that appropriate mitochondrial maturation actually contributes to cellular fate-determination processes during development.
View Publication
产品类型:
产品号#:
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Reference
Andrade LNdS et al. (SEP 2012)
Human Molecular Genetics 21 17 3825--3834
Evidence for premature aging due to oxidative stress in iPSCs from Cockayne syndrome
Cockayne syndrome (CS) is a human premature aging disorder associated with neurological and developmental abnormalities,caused by mutations mainly in the CS group B gene (ERCC6). At the molecular level,CS is characterized by a deficiency in the transcription-couple DNA repair pathway. To understand the role of this molecular pathway in a pluripotent cell and the impact of CSB mutation during human cellular development,we generated induced pluripotent stem cells (iPSCs) from CSB skin fibroblasts (CSB-iPSC). Here,we showed that the lack of functional CSB does not represent a barrier to genetic reprogramming. However,iPSCs derived from CSB patient's fibroblasts exhibited elevated cell death rate and higher reactive oxygen species (ROS) production. Moreover,these cellular phenotypes were accompanied by an up-regulation of TXNIP and TP53 transcriptional expression. Our findings suggest that CSB modulates cell viability in pluripotent stem cells,regulating the expression of TP53 and TXNIP and ROS production.
View Publication