Aged marrow macrophages expand platelet-biased hematopoietic stem cells via Interleukin1B.
The bone marrow microenvironment (BMME) contributes to the regulation of hematopoietic stem cell (HSC) function,though its role in age-associated lineage skewing is poorly understood. Here we show that dysfunction of aged marrow macrophages (Mphis) directs HSC platelet-bias. Mphis from the marrow of aged mice and humans exhibited an activated phenotype,with increased expression of inflammatory signals. Aged marrow Mphis also displayed decreased phagocytic function. Senescent neutrophils,typically cleared by marrow Mphis,were markedly increased in aged mice,consistent with functional defects in Mphi phagocytosis and efferocytosis. In aged mice,Interleukin 1B (IL1B) was elevated in the bone marrow and caspase 1 activity,which can process pro-IL1B,was increased in marrow Mphis and neutrophils. Mechanistically,IL1B signaling was necessary and sufficient to induce a platelet bias in HSCs. In young mice,depletion of phagocytic cell populations or loss of the efferocytic receptor Axl expanded platelet-biased HSCs. Our data support a model wherein increased inflammatory signals and decreased phagocytic function of aged marrow Mphis induce the acquisition of platelet bias in aged HSCs. This work highlights the instructive role of Mphis and IL1B in the age-associated lineage-skewing of HSCs,and reveals the therapeutic potential of their manipulation as antigeronic targets.
View Publication
产品类型:
产品号#:
19762
19762RF
产品名:
EasySep™小鼠中性粒细胞富集试剂盒
RoboSep™ 小鼠中性粒细胞富集试剂盒含滤芯吸头
文献
Ahmad S et al. (JUN 2008)
Stem cells (Dayton,Ohio) 26 6 1609--19
A putative role for RHAMM/HMMR as a negative marker of stem cell-containing population of human limbal epithelial cells.
The corneal epithelium is maintained by stem cells located at the periphery of the cornea in a region known as the limbus. Depletion of limbal stem cells (LSCs) results in limbal stem cell deficiency. Treatments for this disease are based on limbal replacement or transplantation of ex vivo expanded LSCs. It is,therefore,crucial to identify cell surface markers for LSCs that can be used for their enrichment and characterization. Aldehyde dehydrogenases (ALDHs) are enzymes which protect cells from the toxic effects of peroxidic aldehydes. In this manuscript,we show for the first time that ALDH1 is absent from the basal cells of the limbal and corneal epithelium. We separated limbal epithelial cells on the basis of ALDH activity and showed that ALDH(dim) cells expressed significantly higher levels of DeltaNp63 and ABCG2 as well as having a greater colony forming efficiency (CFE) when compared to ALDH(bright) cells. Large scale transcriptional analysis of these two populations led to identification of a new cell surface marker,RHAMM/HMMR,which is located in all layers of corneal epithelium and in the suprabasal layers of the limbal epithelium but is completely absent from the basal layer of the limbus. Our studies indicate that absence of RHAMM/HMMR expression is correlated with properties associated with LSCs. RHAMM/HMMR- limbal epithelial cells are smaller in size,express negligible CK3,have higher levels of DeltaNp63 and have a higher CFE compared to RHAMM/HMMR+ cells. Taken together these results suggest a putative role for RHAMM/ HMMR as a negative marker of stem cell containing limbal epithelial cells. Cell selection based on Hoechst exclusion and lack of cell surface RHAMM/HMMR expression resulted in increased colony forming efficiency compared to negative selection using RHAMM/HMMR alone or positive selection using Hoechst on its own. Combination of these two cell selection methods presents a novel method for LSC enrichment and characterization. Disclosure of potential conflicts of interest is found at the end of this article.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™工具
ALDEFLUOR™ DEAB试剂
文献
Facon T et al. (MAR 2001)
Blood 97 6 1566--71
Chromosome 13 abnormalities identified by FISH analysis and serum beta2-microglobulin produce a powerful myeloma staging system for patients receiving high-dose therapy.
A careful prognostic evaluation of patients referred for high-dose therapy (HDT) is warranted to identify those who maximally benefit from HDT as well as those who clearly fail current HDT and are candidates for more innovative treatments. In a series of 110 patients with myeloma who received HDT as first-line therapy,times to event (disease progression and death) were studied through proportional hazard models,in relation to different prognostic factors,including a chromosome 13 fluorescence in situ hybridization (FISH) analysis using a D13S319 probe. Delta13 was detected in 42 patients (38%). Follow-up time among surviving patients and survival time were 48 +/- 3 and 51 +/- 7 months,respectively (median +/- SE). In the univariate analysis,Delta13 was the most powerful adverse prognostic factor for all times to event,especially for the survival time (P textless.0001) and was followed by beta2-microglobulin (beta2m) levels 2.5 mg/L or higher (P =.0001). The comparison of survival prognostic models including beta2m 2.5 mg/L or greater and another factor favored the Delta13/beta2m combination. In 22 patients (20%) with no unfavorable factor,the median survival time was not reached at 111 months. In contrast,among 55 patients (50%) with one unfavorable factor and 33 patients (30%) with 2 unfavorable factors,median survival times were 47.3 +/- 4.6 months and 25.3 +/- 3.2 months,respectively (P textless.0001). We conclude that delta13,adequately detected by FISH analysis,is a very strong factor related to poor survival,especially when associated with a beta2m level of 2.5 mg/L or higher. Routine FISH Delta13 assessment is strongly recommended for patients considered for HDT.
View Publication
产品类型:
产品号#:
产品名:
文献
T. J. Lynch et al. (MAY 2018)
Cell stem cell 22 5 653--667.e5
Submucosal Gland Myoepithelial Cells Are Reserve Stem Cells That Can Regenerate Mouse Tracheal Epithelium.
The mouse trachea is thought to contain two distinct stem cell compartments that contribute to airway repair-basal cells in the surface airway epithelium (SAE) and an unknown submucosal gland (SMG) cell type. Whether a lineage relationship exists between these two stem cell compartments remains unclear. Using lineage tracing of glandular myoepithelial cells (MECs),we demonstrate that MECs can give rise to seven cell types of the SAE and SMGs following severe airway injury. MECs progressively adopted a basal cell phenotype on the SAE and established lasting progenitors capable of further regeneration following reinjury. MECs activate Wnt-regulated transcription factors (Lef-1/TCF7) following injury and Lef-1 induction in cultured MECs promoted transition to a basal cell phenotype. Surprisingly,dose-dependent MEC conditional activation of Lef-1 in vivo promoted self-limited airway regeneration in the absence of injury. Thus,modulating the Lef-1 transcriptional program in MEC-derived progenitors may have regenerative medicine applications for lung diseases.
View Publication
产品类型:
产品号#:
05001
05021
05022
产品名:
PneumaCult™阿里介质
PneumaCult™阿里介质
PneumaCult™阿里介质
文献
Yau WW et al. (JAN 2011)
Proteome science 9 1 3
Cardiogenol C can induce Mouse Hair Bulge Progenitor Cells to Transdifferentiate into Cardiomyocyte-like Cells.
BACKGROUND: Hair bulge progenitor cells (HBPCs) are multipotent stem cells derived from the bulge region of mice vibrissal hairs. The purified HBPCs express CD34,K15 and K14 surface markers. It has been reported that HBPCs could be readily induced to transdifferentiate into adipocytes and osteocytes. However,the ability of HBPCs to transdifferentiate into cardiomyocytes has not yet been investigated. METHODOLOGY/PRINCIPAL FINDINGS: The cardiomyogenic potential of HBPCs was investigated using a small cell-permeable molecule called Cardiogenol C. We established that Cardiogenol C could induce HBPCs to express transcription factors GATA4,Nkx2.5 and Tbx5,which are early specific markers for pre-cardiomyogenic cells. In prolonged cultures,the Cardiogenol C-treated HBPCs can also express muscle proteins,cardiac-specific troponin I and sarcomeric myosin heavy chain. However,we did not observe the ability of these cells to functionally contract. Hence,we called these cells cardiomyocyte-like cells rather than cardiomyocytes. We tried to remedy this deficiency by pre-treating HBPCs with Valproic acid first before exposing them to Cardiogenol C. This pretreatment inhibited,rather than improved,the effectiveness of Cardiogenol C in reprogramming the HBPCs. We used comparative proteomics to determine how Cardiogenol C worked by identifying proteins that were differentially expressed. We identified proteins that were involved in promoting cell differentiation,cardiomyocyte development and for the normal function of striated muscles. From those differentially expressed proteins,we further propose that Cardiogenol C might exert its effect by activating the Wnt signaling pathway through the suppression of Kremen1. In addition,by up-regulating the expression of chromatin remodeling proteins,SIK1 and Smarce1 would initiate cardiac differentiation. CONCLUSIONS/SIGNIFICANCE: In conclusion,our CD34+/K15+ HBPCs could be induced to transdifferentiate into cardiomyocyte-like cells using a small molecule called Cardiogenol C. The process involves activation of the Wnt signaling pathway and altered expression of several key chromatin remodeling proteins. The finding is clinically significant as HBPCs offer a readily accessible and autologous source of progenitor cells for cell-based therapy of heart disease,which is one of major killers in developed countries.
View Publication
产品类型:
产品号#:
产品名:
文献
Li L et al. (AUG 2011)
Blood 118 6 1504--15
A critical role for SHP2 in STAT5 activation and growth factor-mediated proliferation, survival, and differentiation of human CD34+ cells.
SHP2,a cytoplasmic protein-tyrosine phosphatase encoded by the PTPN11 gene,plays a critical role in developmental hematopoiesis in the mouse,and gain-of-function mutations of SHP2 are associated with hematopoietic malignancies. However,the role of SHP2 in adult hematopoiesis has not been addressed in previous studies. In addition,the role of SHP2 in human hematopoiesis has not been described. These questions are of considerable importance given the interest in development of SHP2 inhibitors for cancer treatment. We used shRNA-mediated inhibition of SHP2 expression to investigate the function of SHP2 in growth factor (GF) signaling in normal human CD34(+) cells. SHP2 knockdown resulted in markedly reduced proliferation and survival of cells cultured with GF,and reduced colony-forming cell growth. Cells expressing gain-of-function SHP2 mutations demonstrated increased dependency on SHP2 expression for survival compared with cells expressing wild-type SHP2. SHP2 knockdown was associated with significantly reduced myeloid and erythroid differentiation with retention of CD34(+) progenitors with enhanced proliferative capacity. Inhibition of SHP2 expression initially enhanced and later inhibited STAT5 phosphorylation and reduced expression of the antiapoptotic genes MCL1 and BCLXL. These results indicate an important role for SHP2 in STAT5 activation and GF-mediated proliferation,survival,and differentiation of human progenitor cells.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
文献
Mahdipour E et al. (JAN 2011)
Blood 117 3 815--26
Hoxa3 promotes the differentiation of hematopoietic progenitor cells into proangiogenic Gr-1+CD11b+ myeloid cells.
Injury induces the recruitment of bone marrow-derived cells (BMDCs) that contribute to the repair and regeneration process. The behavior of BMDCs in injured tissue has a profound effect on repair,but the regulation of BMDC behavior is poorly understood. Aberrant recruitment/retention of these cells in wounds of diabetic patients and animal models is associated with chronic inflammation and impaired healing. BMD Gr-1(+)CD11b(+) cells function as immune suppressor cells and contribute significantly to tumor-induced neovascularization. Here we report that Gr-1(+)CD11b(+) cells also contribute to injury-induced neovascularization,but show altered recruitment/retention kinetics in the diabetic environment. Moreover,diabetic-derived Gr-1(+)CD11b(+) cells fail to stimulate neovascularization in vivo and have aberrant proliferative,chemotaxis,adhesion,and differentiation potential. Previously we demonstrated that gene transfer of HOXA3 to wounds of diabetic mice is taken up by and expressed by recruited BMDCs. This is associated with a suppressed inflammatory response,enhanced neovascularization,and accelerated wound healing. Here we show that sustained expression of Hoxa3 in diabetic-derived BMD Gr-1(+)CD11b(+) cells reverses their diabetic phenotype. These findings demonstrate that manipulation of adult stem/progenitor cells ex vivo could be used as a potential therapy in patients with impaired wound healing.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
文献
Goldman FD et al. (MAY 2008)
Blood 111 9 4523--31
Characterization of primitive hematopoietic cells from patients with dyskeratosis congenita.
Dyskeratosis congenita (DC) is an inherited bone marrow (BM) failure syndrome associated with mutations in telomerase genes and the acquisition of shortened telomeres in blood cells. To investigate the basis of the compromised hematopoiesis seen in DC,we analyzed cells from granulocyte colony-stimulating factor mobilized peripheral blood (mPB) collections from 5 members of a family with autosomal dominant DC with a hTERC mutation. Premobilization BM samples were hypocellular,and percentages of CD34(+) cells in marrow and mPB collections were significantly below values for age-matched controls in 4 DC subjects. Directly clonogenic cells,although present at normal frequencies within the CD34(+) subset,were therefore absolutely decreased. In contrast,even the frequency of long-term culture-initiating cells within the CD34(+) DC mPB cells was decreased,and the telomere lengths of these cells were also markedly reduced. Nevertheless,the different lineages of mature cells were produced in normal numbers in vitro. These results suggest that marrow failure in DC is caused by a reduction in the ability of hematopoietic stem cells to sustain their numbers due to telomere impairment rather than a qualitative defect in their commitment to specific lineages or in the ability of their lineage-restricted progeny to execute normal differentiation programs.
View Publication
产品类型:
产品号#:
04434
04444
09600
09650
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
StemSpan™ SFEM
StemSpan™ SFEM
文献
G. La Manno et al. (OCT 2016)
Cell 167 2 566--580.e19
Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells.
Understanding human embryonic ventral midbrain is of major interest for Parkinson's disease. However,the cell types,their gene expression dynamics,and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly defined human cell types,including five subtypes of radial glia-like cells and four progenitors. In the mouse,two mature fetal dopaminergic neuron subtypes diversified into five adult classes during postnatal development. Cell types and gene expression were generally conserved across species,but with clear differences in cell proliferation,developmental timing,and dopaminergic neuron development. Additionally,we developed a method to quantitatively assess the fidelity of dopaminergic neurons derived from human pluripotent stem cells,at a single-cell level. Thus,our study provides insight into the molecular programs controlling human midbrain development and provides a foundation for the development of cell replacement therapies.
View Publication
产品类型:
产品号#:
产品名:
文献
Brambrink T et al. (FEB 2008)
Cell stem cell 2 2 151--9
Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells.
Pluripotency can be induced in differentiated murine and human cells by retroviral transduction of Oct4,Sox2,Klf4,and c-Myc. We have devised a reprogramming strategy in which these four transcription factors are expressed from doxycycline (dox)-inducible lentiviral vectors. Using these inducible constructs,we derived induced pluripotent stem (iPS) cells from mouse embryonic fibroblasts (MEFs) and found that transgene silencing is a prerequisite for normal cell differentiation. We have analyzed the timing of known pluripotency marker activation during mouse iPS cell derivation and observed that alkaline phosphatase (AP) was activated first,followed by stage-specific embryonic antigen 1 (SSEA1). Expression of Nanog and the endogenous Oct4 gene,marking fully reprogrammed cells,was only observed late in the process. Importantly,the virally transduced cDNAs needed to be expressed for at least 12 days in order to generate iPS cells. Our results are a step toward understanding some of the molecular events governing epigenetic reprogramming.
View Publication
产品类型:
产品号#:
72742
产品名:
Doxycycline (Hyclate)
文献
Fukuta M et al. (DEC 2014)
PLoS ONE 9 12 e112291
Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media
Neural crest cells (NCCs) are an embryonic migratory cell population with the ability to differentiate into a wide variety of cell types that contribute to the craniofacial skeleton,cornea,peripheral nervous system,and skin pigmentation. This ability suggests the promising role of NCCs as a source for cell-based therapy. Although several methods have been used to induce human NCCs (hNCCs) from human pluripotent stem cells (hPSCs),such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs),further modifications are required to improve the robustness,efficacy,and simplicity of these methods. Chemically defined medium (CDM) was used as the basal medium in the induction and maintenance steps. By optimizing the culture conditions,the combination of the GSK3β inhibitor and TGFβ inhibitor with a minimum growth factor (insulin) very efficiently induced hNCCs (70-80%) from hPSCs. The induced hNCCs expressed cranial NCC-related genes and stably proliferated in CDM supplemented with EGF and FGF2 up to at least 10 passages without changes being observed in the major gene expression profiles. Differentiation properties were confirmed for peripheral neurons,glia,melanocytes,and corneal endothelial cells. In addition,cells with differentiation characteristics similar to multipotent mesenchymal stromal cells (MSCs) were induced from hNCCs using CDM specific for human MSCs. Our simple and robust induction protocol using small molecule compounds with defined media enabled the generation of hNCCs as an intermediate material producing terminally differentiated cells for cell-based innovative medicine.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Lee S-HH et al. (JUN 2000)
Nature biotechnology 18 6 675--9
Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells.
Embryonic stem (ES) cells are clonal cell lines derived from the inner cell mass of the developing blastocyst that can proliferate extensively in vitro and are capable of adopting all the cell fates in a developing embryo. Clinical interest in the use of ES cells has been stimulated by studies showing that isolated human cells with ES properties from the inner cell mass or developing germ cells can provide a source of somatic precursors. Previous studies have defined in vitro conditions for promoting the development of specific somatic fates,specifically,hematopoietic,mesodermal,and neurectodermal. In this study,we present a method for obtaining dopaminergic (DA) and serotonergic neurons in high yield from mouse ES cells in vitro. Furthermore,we demonstrate that the ES cells can be obtained in unlimited numbers and that these neuron types are generated efficiently. We generated CNS progenitor populations from ES cells,expanded these cells and promoted their differentiation into dopaminergic and serotonergic neurons in the presence of mitogen and specific signaling molecules. The differentiation and maturation of neuronal cells was completed after mitogen withdrawal from the growth medium. This experimental system provides a powerful tool for analyzing the molecular mechanisms controlling the functions of these neurons in vitro and in vivo,and potentially for understanding and treating neurodegenerative and psychiatric diseases.
View Publication