Boitano AE et al. (SEP 2010)
Science (New York,N.Y.) 329 5997 1345--8
Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells.
Although practiced clinically for more than 40 years,the use of hematopoietic stem cell (HSC) transplants remains limited by the ability to expand these cells ex vivo. An unbiased screen with primary human HSCs identified a purine derivative,StemRegenin 1 (SR1),that promotes the ex vivo expansion of CD34+ cells. Culture of HSCs with SR1 led to a 50-fold increase in cells expressing CD34 and a 17-fold increase in cells that retain the ability to engraft immunodeficient mice. Mechanistic studies show that SR1 acts by antagonizing the aryl hydrocarbon receptor (AHR). The identification of SR1 and AHR modulation as a means to induce ex vivo HSC expansion should facilitate the clinical use of HSC therapy.
View Publication
产品类型:
产品号#:
72342
72344
72352
72354
72732
72734
产品名:
StemRegenin 1
StemRegenin 1
StemRegenin 1(盐酸盐)
StemRegenin 1(盐酸盐)
CH223191
CH223191
文献
Tzeng Y-S et al. (JAN 2011)
Blood 117 2 429--39
Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression.
The C-X-C-type chemokine Cxcl12,also known as stromal cell-derived factor-1,plays a critical role in hematopoiesis during fetal development. However,the functional requirement of Cxcl12 in the adult hematopoietic stem/progenitor cell (HSPC) regulation was still unclear. In this report,we developed a murine Cxcl12 conditional deletion model in which the target gene can be deleted at the adult stage. We found that loss of stroma-secreted Cxcl12 in the adult led to expansion of the HSPC population as well as a reduction in long-term quiescent stem cells. In Cxcl12-deficient bone marrow,HSPCs were absent along the endosteal surface,and blood cell regeneration occurred predominantly in the perisinusoidal space after 5-fluorouracil myelosuppression challenge. Our results indicate that Cxcl12 is required for HSPC homeostasis regulation and is an important factor for osteoblastic niche organization in adult stage bone marrow.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
文献
Lu M et al. (AUG 2009)
Experimental hematology 37 8 924--36
Enhanced generation of hematopoietic cells from human hepatocarcinoma cell-stimulated human embryonic and induced pluripotent stem cells
Objective: Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) constitute unique sources of pluripotent cells,although the molecular mechanisms involved in their differentiation into specific lineages are just beginning to be defined. Here we evaluated the ability of MEDII (medium conditioned by HepG2 cells,a human hepatocarcinoma cell line) to selectively enhance generation of mesodermal derivatives,including hematopoietic cells,from hESCs and hiPSCs. Materials and Methods: Test cells were exposed to MEDII prior to being placed in conditions that promote embryoid body (EB) formation. Hematopoietic activity was measured by clonogenic assays,flow cytometry,quantitative real-time polymerase chain reaction of specific transcript complementary DNAs and the ability of cells to repopulate sublethally irradiated nonobese diabetic/severe combined immunodeficient interleukin-2 receptor ??-chain-null mice for almost 1 year. Results: Exposure of both hESCs and hiPSCs to MEDII induced a rapid and preferential differentiation of hESCs into mesodermal elements. Subsequently produced EBs showed a further enhanced expression of transcripts characteristic of multiple mesodermal lineages,and a concurrent decrease in endodermal and ectodermal cell transcripts. Frequency of all types of clonogenic hematopoietic progenitors in subsequently derived EBs was also increased. In vivo assays of MEDII-treated hESC-derived EBs also showed they contained cells able to undertake low-level but longterm multilineage repopulation of primary and secondary nonobese diabetic/severe combined immunodeficient interleukin-2 receptor ??-chain-null mice. Conclusions: MEDII treatment of hESCs and hiPSCs alike selectively enhances their differentiation into mesodermal cells and allows subsequent generation of detectable levels of hematopoietic progenitors with in vitro and in vivo differentiating activity. ?? 2009 ISEH - Society for Hematology and Stem Cells.
View Publication
产品类型:
产品号#:
04230
36254
85850
85857
产品名:
MethoCult™H4230
DMEM/F-12 with 15 mM HEPES
mTeSR™1
mTeSR™1
文献
Petzer AL et al. (FEB 1996)
Proceedings of the National Academy of Sciences of the United States of America 93 4 1470--4
Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in defined medium.
A major goal of experimental and clinical hematology is the identification of mechanisms and conditions that support the expansion of transplantable hematopoietic stem cells. In normal marrow,such cells appear to be identical to (or represent a subset of) a population referred to as long-term-culture-initiating cells (LTC-ICs) so-named because of their ability to produce colony-forming cell (CFC) progeny for textgreater or = 5 weeks when cocultured with stromal fibroblasts. Some expansion of LTC-ICs in vitro has recently been described,but identification of the factors required and whether LTC-IC self-renewal divisions are involved have remained unresolved issues. To address these issues,we examined the maintenance and/or generation of LTC-ICs from single CD34+ CD38- cells cultured for variable periods under different culture conditions. Analysis of the progeny obtained from cultures containing a feeder layer of murine fibroblasts engineered to produce steel factor,interleukin (IL)-3,and granulocyte colony-stimulating factor showed that approximately 20% of the input LTC-ICs (representing approximately 2% of the original CD34+ CD38- cells) executed self-renewal divisions within a 6-week period. Incubation of the same CD34+ CD38- starting populations as single cells in a defined (serum free) liquid medium supplemented with Flt-3 ligand,steel factor,IL-3,IL-6,granulocyte colony-stimulating factor,and nerve growth factor resulted in the proliferation of initial cells to produce clones of from 4 to 1000 cells within 10 days,approximately 40% of which included textgreater or = 1 LTC-IC. In contrast,in similar cultures containing methylcellulose,input LTC-ICs appeared to persist but not divide. Overall the LTC-IC expansion in the liquid cultures was 30-fold in the first 10 days and 50-fold by the end of another 1-3 weeks. Documentation of human LTC-IC self-renewal in vitro and identification of defined conditions that permit their extensive and rapid amplification should facilitate analysis of the molecular mechanisms underlying these processes and their exploitation for a variety of therapeutic applications.
View Publication
产品类型:
产品号#:
04436
04064
04100
04230
04236
04431
04434
04444
05150
04464
04531
04535
04545
04536
04564
04035
04330
04034
04044
04435
04445
04534
04544
产品名:
MethoCult™ SF H4436
MethoCult™ H4034 Optimum启动试剂盒套装
MethoCult™ H4100
MethoCult™H4230
MethoCult™SF H4236
MethoCult™H4431
MethoCult™H4434经典
MethoCult™H4434经典
MyeloCult™H5100
MethoCult™ H4434 Classic启动试剂盒套装
MethoCult™H4531
MethoCult™H4535富集无EPO
MethoCult™ H4535 Enriched,不含EPO
MethoCult™ SF H4536
入门套件MethoCult™H4534经典无EPO
MethoCult™H4035 Optimum无EPO
MethoCult™H4330
MethoCult™H4034 Optimum
MethoCult™H4034 Optimum
MethoCult™H4435富集
MethoCult™H4435富集
MethoCult™H4534经典无EPO
MethoCult™H4534经典无EPO
文献
Zhang CC and Lodish HF (JUN 2005)
Blood 105 11 4314--20
Murine hematopoietic stem cells change their surface phenotype during ex vivo expansion.
Ex vivo expansion of hematopoietic stem cells (HSCs) is important for many clinical applications,and knowledge of the surface phenotype of ex vivo-expanded HSCs will be critical to their purification and analysis. Here,we developed a simple culture system for bone marrow (BM) HSCs using low levels of stem cell factor (SCF),thrombopoietin (TPO),insulin-like growth factor 2 (IGF-2),and fibroblast growth factor-1 (FGF-1) in serum-free medium. As measured by competitive repopulation analyses,there was a more than 20-fold increase in numbers of long-term (LT)-HSCs after a 10-day culture of total BM cells. Culture of BM side population" (SP) cells�
View Publication
Silencing p21(Waf1/Cip1/Sdi1) expression increases gene transduction efficiency in primitive human hematopoietic cells.
Adult hematopoietic and other tissue stem cells have highly constrained cell cycling that limits their susceptibility to standard gene therapy vectors,which depend upon chromosomal integration. Using cytokine cocktails to increase transduction efficiency often compromises subsequent stem cell function in vivo. We previously showed that p21(Waf1/Cip1/Sdi1) (p21) mediates stem cell quiescence in vivo and decreasing its expression ex vivo leads to an expansion of stem cell pool in vivo. Here,we report that application of p21 specific siRNA increased the gene transduction efficiency in hematopoietic stem cells while preserving cell multipotentiality. Both types of siRNA,synthesized siRNA and transcribed shRNA,reduced p21 expression in target cells by 85-98%. The effect of RNAi in these cells was transient and the level of p21 mRNA returned to base line 14-28 days after siRNA treatment. This brief interval of reduction,however,was sufficient to increase transduction efficiency to two- to four-fold in cell cultures,and followed by a seven- to eight-fold increase in mice. The RNAi treated,lentivector-transduced CD34+ cells retained multipotentiality as assessed in vitro by colony formation assay and in vivo by NOD/SCID mouse transplantation assay. Reduction of p21 resulted in an increased chromosomal integration of lentivector into target cellular DNA. Taken together,both synthesized and transcribed siRNA knocked down p21 expression in human CD34+ hematopoietic stem/progenitor cells. Silencing p21 expression increased gene transduction efficiency and vector integration while retaining stem cell multipotentiality. Thus,RNAi targeting of p21 is a useful strategy to increase stem cell gene transfer efficiency. Decreasing p21 expression transiently while increasing gene-transfer vector integration may ultimately facilitate clinical applications of gene therapy.
View Publication
产品类型:
产品号#:
产品名:
文献
Van Meter MEM et al. (MAY 2007)
Blood 109 9 3945--52
K-RasG12D expression induces hyperproliferation and aberrant signaling in primary hematopoietic stem/progenitor cells.
Defining how cancer-associated mutations perturb signaling networks in stem/progenitor populations that are integral to tumor formation and maintenance is a fundamental problem with biologic and clinical implications. Point mutations in RAS genes contribute to many cancers,including myeloid malignancies. We investigated the effects of an oncogenic Kras(G12D) allele on phosphorylated signaling molecules in primary c-kit(+) lin(-/low) hematopoietic stem/progenitor cells. Comparison of wild-type and Kras(G12D) c-kit(+) lin(-/low) cells shows that K-Ras(G12D) expression causes hyperproliferation in vivo and results in abnormal levels of phosphorylated STAT5,ERK,and S6 under basal and stimulated conditions. Whereas Kras(G12D) cells demonstrate hyperactive signaling after exposure to granulocyte-macrophage colony-stimulating factor,we unexpectedly observe a paradoxical attenuation of ERK and S6 phosphorylation in response to stem cell factor. These studies provide direct biochemical evidence that cancer stem/progenitor cells remodel signaling networks in response to oncogenic stress and demonstrate that multi-parameter flow cytometry can be used to monitor the effects of targeted therapeutics in vivo. This strategy has broad implications for defining the architecture of signaling networks in primary cancer cells and for implementing stem cell-targeted interventions.
View Publication
Feeder-independent culture systems for human pluripotent stem cells.
The continued success of pluripotent stem cell research is ultimately dependent on access to reliable and defined reagents for the consistent culture and cryopreservation of undifferentiated,pluripotent cells. The development of defined and feeder-independent culture media has provided a platform for greater reproducibility and standardization in this field. Here we provide detailed protocols for the use of mTeSR™1 and TeSR™2 with various cell culture matrices as well as defined cryopreservation protocols for human embryonic and human induced pluripotent stem cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Wö et al. (NOV 2010)
Blood 116 20 4116--25
Lineage-instructive function of C/EBPα in multipotent hematopoietic cells and early thymic progenitors.
Hematopoiesis is tightly controlled by transcription regulatory networks,but how and when specific transcription factors control lineage commitment are still largely unknown. Within the hematopoietic stem cell (Lin(-)Sca-1(+)c-Kit(+)) compartment these lineage-specific transcription factors are expressed at low levels but are up-regulated with the process of lineage specification. CCAAT/enhancer binding protein α (C/EBPα) represents one of these factors and is involved in myeloid development and indispensable for formation of granulocytes. To track the cellular fate of stem and progenitor cells,which express C/EBPα,we developed a mouse model expressing Cre recombinase from the Cebpa promoter and a conditional EYFP allele. We show that Cebpa/EYFP(+) cells represent a significant subset of multipotent hematopoietic progenitors,which predominantly give rise to myeloid cells in steady-state hematopoiesis. C/EBPα induced a strong myeloid gene expression signature and down-regulated E2A-induced regulators of early lymphoid development. In addition,Cebpa/EYFP(+) cells compose a fraction of early thymic progenitors with robust myeloid potential. However,Cebpa/EYFP(+) multipotent hematopoietic progenitors and early thymic progenitors retained the ability to develop into erythroid and T-lymphoid lineages,respectively. These findings support an instructive but argue against a lineage-restrictive role of C/EBPα in multipotent hematopoietic and thymic progenitors.
View Publication
产品类型:
产品号#:
03231
产品名:
MethoCult™M3231
文献
Tchernychev B et al. (DEC 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 51 22255--9
Discovery of a CXCR4 agonist pepducin that mobilizes bone marrow hematopoietic cells.
The G protein-coupled receptor (GPCR),chemokine CXC-type receptor 4 (CXCR4),and its ligand,CXCL12,mediate the retention of polymorphonuclear neutrophils (PMNs) and hematopoietic stem and progenitor cells (HSPCs) in the bone marrow. Agents that disrupt CXCL12-mediated chemoattraction of CXCR4-expressing cells mobilize PMNs and HSPCs into the peripheral circulation and are therapeutically useful for HSPC collection before autologous bone marrow transplantation (ABMT). Our aim was to develop unique CXCR4-targeted therapeutics using lipopeptide GPCR modulators called pepducins. A pepducin is a synthetic molecule composed of a peptide derived from the amino acid sequence of one of the intracellular (IC) loops of a target GPCR coupled to a lipid tether. We prepared and screened a small CXCR4-targeted pepducin library and identified several pepducins with in vitro agonist activity,including ATI-2341,whose peptide sequence derives from the first IC loop. ATI-2341 induced CXCR4- and G protein-dependent signaling,receptor internalization,and chemotaxis in CXCR4-expressing cells. It also induced dose-dependent peritoneal recruitment of PMNs when administered i.p. to mice. However,when administered systemically by i.v. bolus,ATI-2341 acted as a functional antagonist and dose-dependently mediated release of PMNs from the bone marrow of both mice and cynomolgus monkeys. ATI-2341-mediated release of granulocyte/macrophage progenitor cells from the bone marrow was confirmed by colony-forming assays. We conclude that ATI-2341 is a potent and efficacious mobilizer of bone marrow PMNs and HSPCs and could represent a previously undescribed therapeutic approach for the recruitment of HSPCs before ABMT.
View Publication
产品类型:
产品号#:
03534
产品名:
MethoCult™GF M3534
文献
M. C. Czarnog\'orski et al. (nov 2022)
Immunity & ageing : I & A 19 1 51
Ageing-resembling phenotype of long-term allogeneic hematopoietic cells recipients compared to their donors.
BACKGROUND Ageing is a complex phenomenon that leads to decreased proliferative activity,loss of function of the cells,and cellular senescence. Senescence of the immune system exacerbates individual's immune response,both humoral and cellular but increases the frequency of infections. We hypothesized that physiological ageing of adaptive immune system occurs in recipients of allogeneic hematopoietic cells transplant (allo-HCT) at faster rate when compared to their respective donors since the small number of donor cells undergo immense proliferative stress restoring recipients hematopoiesis. We compared molecular characterizations of ageing between recipients and donors of allo-HCT: telomeric length and immunophenotypic changes in main lymphocyte subsets - CD4+,CD8+,CD19+,CD56+. RESULTS Median telomeric length (TL) of CD8+ lymphocytes was significantly longer in donors compared to recipients (on average 2,1 kb and 1,7 kb respectively,p??=??0,02). Similar trends were observed for CD4+ and CD19+ although the results did not reach statistical significance. We have also found trends in the immunophenotype between recipients and donors in the subpopulations of CD4+ (na{\{i}}ve and effector memory) CD8+ Eomes+ and B-lymphocytes (B1 and B2). Lower infection risk recipients had also a significantly greater percentage of NK cells (22 3%) than high-risk patients (9 3%) p??=??0 04. CONCLUSION Our data do not support the initial hypothesis of accelerated aging in the long term all-HCT recipients with the exception of the recipients lymphocytes (mainly CD8+) which present some molecular features characteristic for physiological ageing (telomeric shortening immunophenotype) when compared to their respective donors. However a history of lower infection numbers in HCT recipients seems to be associated with increased percentage of NK cells. The history of GVHD seems not to affect the rate of ageing. Therefore it is safe to conclude that the observed subtle differences between recipients' and donors' cells result mainly from the proliferative stress in the early period after allo-HCT and the difference between hosts' and recipients' microenvironments."
View Publication
产品类型:
产品号#:
产品名:
文献
Maeda M et al. (JAN 2006)
The Journal of biological chemistry 281 1 59--68
Src activation is not necessary for transforming growth factor (TGF)-beta-mediated epithelial to mesenchymal transitions (EMT) in mammary epithelial cells. PP1 directly inhibits TGF-beta receptors I and II.
Epithelial to mesenchymal transitions (EMTs) are key events during embryonic development and cancer progression. It has been proposed that Src plays a major role in some EMT models,as shown by the overexpression of viral Src (v-Src) in epithelial cells. It is clear that Src family kinases can regulate the integrity of both adherens junctions and focal adhesions; however,their significance in EMT,especially in the physiological context,remains to be elucidated. Here we showed that Src is activated in transforming growth factor-beta1 (TGF-beta1)-mediated EMT in mammary epithelial cells and that the Src family kinase inhibitor,PP1,prevents EMT. However,neither a more specific Src family kinase inhibitor,SU6656,nor a dominant-negative Src inhibited TGF-beta1-mediated EMT,leading us to speculate that Src activation is not an essential component of TGF-beta1-mediated EMT. Unexpectedly,PP1 prevented Smad2/3 activation by TGF-beta1,whereas SU6656 did not. Most interestingly,an in vitro kinase assay showed that PP1 strongly inhibited the TGF-beta receptor type I,and to a lesser extent,the TGF-beta receptor type II. Taken together,our data indicated that PP1 interferes with TGF-beta1-mediated EMT not by inhibiting Src family kinases but by inhibiting the Smad pathway via a direct inhibition of TGF-beta receptor kinase activity.
View Publication