Hogge D et al. (MAR 1997)
British journal of haematology 96 4 790--800
Quantitation and characterization of human megakaryocyte colony-forming cells using a standardized serum-free agarose assay.
Human progenitors of the megakaryocyte (Mk) lineage were detected by their ability to generate colonies-containing from 3 to textgreater 100 Mk,detectable as glycoprotein IIb/IIIa+ cells in APAAP-stained whole mount agarose cultures. Optimal growth conditions were achieved through the use of a defined serum substitute and a suitable cocktail of recombinant cytokines. Under these culture conditions,the smallest Mk-containing colonies (CFC-Mk) were detectable within a week followed by colonies containing larger numbers of Mk over the ensuing 2 weeks. The total number of CFC-Mk at 18-21 d was linearly related to the number of cells plated. Variation in the cytokines added showed that thrombopoietin (TPO) or IL-3 alone would support the formation of large numbers of CFC-Mk. However,optimal yields of colonies containing cells of both Mk and non-Mk lineages required the addition of other growth factors,of which a combination of IL-3,IL-6,GM-CSF and Steel factor (SF) +/- TPO was the best of those tested. The further addition of erythropoietin to this combination reduced the number of large pure' Mk colonies seen and in their place a corresponding number of mixed erythroid-Mk colonies became detectable. Flt3-ligand alone was unable to support the growth of CFC-Mk nor did it enhance their growth when combined with other factors. Plating of FACS-sorted sub-populations of CD34+ marrow cells in both serum-free agarose and methylcellulose assays demonstrated that most CFC-Mk are generated from CD34+ cells that are CD45RA- and CD71+�
View Publication
产品类型:
产品号#:
04961
04962
04915
04807
04809
04906
04913
04803
04804
04905
04850
04974
04902
04960
04900
04901
04963
04970
04971
产品名:
MegaCult™-C胶原蛋白和细胞因子培养基
MegaCult™-C cfu染色试剂盒
MegaCult-C 10% BSA, 6mL
MegaCult-C Human Serum, 6mL
Alkaline Phosphatase Substrate Tabs, pk
Biotin/Conjugate Goat Anti-Mu lgG, 125uL
MegaCult-C Evans Blue Stain, 5mL
Primary Ab, Anti-HuAnti-GPIIb/IIIa 360uL
MegaCult-C Control Antibody, 100 µL
Avidin-Alk Phosphatase Conjugate, 200 uL
MegaCult™-C含脂培养基
MegaCult™-C胶原蛋白和脂质培养基
胶原蛋白溶液
MegaCult™-C胶原蛋白和不含细胞因子的培养基
MegaCult™-C培养基无细胞因子
MegaCult™-C细胞因子培养基
双室载玻片试剂盒
MegaCult™-C不含细胞因子完整试剂盒
MegaCult™-C细胞因子完整试剂盒
文献
Sikandar SS et al. (FEB 2010)
Cancer research 70 4 1469--78
NOTCH signaling is required for formation and self-renewal of tumor-initiating cells and for repression of secretory cell differentiation in colon cancer.
NOTCH signaling is critical for specifying the intestinal epithelial cell lineage and for initiating colorectal adenomas and colorectal cancers (CRC). Based on evidence that NOTCH is important for the maintenance and self-renewal of cancer-initiating cells in other malignancies,we studied the role of NOTCH signaling in colon cancer-initiating cells (CCIC). Tumors formed by CCICs maintain many properties of the primary CRCs from which they were derived,such as glandular organization,cell polarity,gap junctions,and expression of characteristic CRC molecular markers. Furthermore,CCICs have the property of self-renewal. In this study,we show that NOTCH signaling is 10- to 30-fold higher in CCIC compared with widely used colon cancer cell lines. Using small-molecule inhibition and short hairpin RNA knockdown,we show that NOTCH prevents CCIC apoptosis through repression of cell cycle kinase inhibitor p27 and transcription factor ATOH1. NOTCH is also critical to intrinsic maintenance of CCIC self-renewal and the repression of secretory cell lineage differentiation genes such as MUC2. Our findings describe a novel human cell system to study NOTCH signaling in CRC tumor initiation and suggest that inhibition of NOTCH signaling may improve CRC chemoprevention and chemotherapy.
View Publication
Activation of JNKs is essential for BMP9-induced osteogenic differentiation of mesenchymal stem cells.
Although BMP9 is highly capable of promoting osteogenic differentiation of mesenchymal stem cell (MSCs),the molecular mechanism involved remains to be fully elucidated. Here,we explore the possible involvement and detail role of JNKs (c-Jun N-terminal kinases) in BMP9-induced osteogenic differentiation of MSCs. It was found that BMP9 stimulated the activation of JNKs in MSCs. BMP9-induced osteogenic differentiation of MSCs was dramatically inhibited by JNKs inhibitor SP600125. Moreover,BMP9-activated Smads signaling was decreased by SP600125 treatment in MSCs. The effects of inhibitor are reproduced with adenoviruses expressing siRNA targeted JNKs. Taken together,our results revealed that JNKs was activated in BMP9-induced osteogenic differentiation of MSCs. What is most noteworthy,however,is that inhibition of JNKs activity resulted in reduction of BMP9-induced osteogenic differentiation of MSCs,implying that activation of JNKs is essential for BMP9 osteoinductive activity.
View Publication
产品类型:
产品号#:
72642
产品名:
SP600125
文献
Kanninen LK et al. (JUN 2016)
Biomaterials 103 86--100
Laminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells
Human pluripotent stem cells (hPSCs) have gained a solid foothold in basic research and drug industry as they can be used in??vitro to study human development and have potential to offer limitless supply of various somatic cell types needed in drug development. Although the hepatic differentiation of hPSCs has been extensively studied,only a little attention has been paid to the role of the extracellular matrix. In this study we used laminin-511,laminin-521,and fibronectin,found in human liver progenitor cells,as culture matrices for hPSC-derived definitive endoderm cells. We observed that laminin-511 and laminin-521 either alone or in combination support the hepatic specification and that fibronectin is not a vital matrix protein for the hPSC-derived definitive endoderm cells. The expression of the laminin-511/521-specific integrins increased during the definitive endoderm induction and hepatic specification. The hepatic cells differentiated on laminin matrices showed the upregulation of liver-specific markers both at mRNA and protein levels,secreted human albumin,stored glycogen,and exhibited cytochrome P450 enzyme activity and inducibility. Altogether,we found that laminin-511 and laminin-521 can be used as stage-specific matrices to guide the hepatic specification of hPSC-derived definitive endoderm cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
文献
Kokudo T et al. (OCT 2008)
Journal of cell science 121 20 3317--24
Snail is required for TGFbeta-induced endothelial-mesenchymal transition of embryonic stem cell-derived endothelial cells.
Epithelial-mesenchymal transition (EMT) plays important roles in various physiological and pathological processes,and is regulated by signaling pathways mediated by cytokines,including transforming growth factor beta (TGFbeta). Embryonic endothelial cells also undergo differentiation into mesenchymal cells during heart valve formation and aortic maturation. However,the molecular mechanisms that regulate such endothelial-mesenchymal transition (EndMT) remain to be elucidated. Here we show that TGFbeta plays important roles during mural differentiation of mouse embryonic stem cell-derived endothelial cells (MESECs). TGFbeta2 induced the differentiation of MESECs into mural cells,with a decrease in the expression of the endothelial marker claudin 5,and an increase in expression of the mural markers smooth muscle alpha-actin,SM22alpha and calponin,whereas a TGFbeta type I receptor kinase inhibitor inhibited EndMT. Among the transcription factors involved in EMT,Snail was induced by TGFbeta2 in MESECs. Tetracycline-regulated expression of Snail induced the differentiation of MESECs into mural cells,whereas knockdown of Snail expression abrogated TGFbeta2-induced mural differentiation of MESECs. These results indicate that Snail mediates the actions of endogenous TGFbeta signals that induce EndMT.
View Publication
产品类型:
产品号#:
72592
产品名:
LY364947
文献
Jiang G et al. (SEP 2014)
Tissue engineering. Part C,Methods 20 9 731--740
Induced pluripotent stem cells from human placental chorion for perinatal tissue engineering applications.
The reliable derivation of induced pluripotent stem cells (iPSCs) from a noninvasive autologous source at birth would facilitate the study of patient-specific in vitro modeling of congenital diseases and would enhance ongoing efforts aimed at developing novel cell-based treatments for a wide array of fetal and pediatric disorders. Accordingly,we have successfully generated iPSCs from human fetal chorionic somatic cells extracted from term pregnancies by ectopic expression of OCT4,SOX2,KLF4,and cMYC. The isolated parental somatic cells exhibited an immunophenotypic profile consistent with that of chorionic mesenchymal stromal cells (CMSCs). CMSC-iPSCs maintained pluripotency in feeder-free systems for more than 15 passages based on morphology,immunocytochemistry,and gene expression studies and were capable of embryoid body formation with spontaneous trilineage differentiation. CMSC-iPSCs could be selectively differentiated in vitro into various germ layer derivatives,including neural stem cells,beating cardiomyocytes,and definitive endoderm. This study demonstrates the feasibility of term placental chorion as a novel noninvasive alternative to dermal fibroblasts and cord blood for human perinatal iPSC derivation and may provide additional insights regarding the reprogramming capabilities of extra-embryonic tissues as they relate to developmental ontogeny and perinatal tissue engineering applications.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Zhu W-Z et al. ( 2011)
Methods in molecular biology (Clifton,N.J.) 767 419--31
Methods for the derivation and use of cardiomyocytes from human pluripotent stem cells.
The availability of human cardiomyocytes derived from embryonic stem cells (ESCs) has generated -considerable excitement,as these cells are an excellent model system for studying myocardial development and may have eventual application in cell-based cardiac repair. Cardiomyocytes derived from the related induced pluripotent stem cells (iPSCs) have similar properties,but also offer the prospects of patient-specific disease modeling and cell therapies. Unfortunately,the methods by which cardiomyocytes have been historically generated from pluripotent stem cells are unreliable and typically result in preparations of low cardiac purity (typically textless1% cardiomyocytes). We detail here the methods for a recently reported directed cardiac differentiation protocol,which involves the serial application of two growth factors known to be involved in early embryonic heart development,activin A,and bone morphogenetic protein-4 (BMP-4). This protocol reliably yields preparations of 30-60% cardiomyocytes,which can then be further enriched to textgreater90% cardiomyocytes using straightforward physical methods.
View Publication
产品类型:
产品号#:
07930
07931
07940
07955
07959
产品名:
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
文献
Onuma Y et al. (FEB 2013)
Biochemical and biophysical research communications 431 3 524--529
RBC2LCN, a new probe for live cell imaging of human pluripotent stem cells
Cell surface biomarkers have been applied to discriminate pluripotent human embryonic stem cells and induced pluripotent stem cells from differentiated cells. Here,we demonstrate that a recombinant lectin probe,rBC2LCN,a new tool for fluorescence-based imaging and flow cytometry analysis of pluripotent stem cells,is an alternative to conventional pluripotent maker antibodies. Live or fixed colonies of both human embryonic stem cells and induced pluripotent stem cells were visualized in culture medium containing fluorescent dye-labeled rBC2LCN. Fluorescent dye-labeled rBC2LCN was also successfully used to separate live pluripotent stem cells from a mixed cell population by flow cytometry. textcopyright 2013 Elsevier Inc.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Sequiera GL et al. (JAN 2016)
Methods in molecular biology (Clifton,N.J.) 1307 379--83
A Simple Protocol for the Generation of Cardiomyocytes from Human Pluripotent Stem Cells.
Efficient generation of cardiomyocytes from pluripotent stem cells (PSCs) for multiple downstream applications such as regenerative medicine,disease modeling,and drug screening remains a challenge. Cardiomyogenesis may be regulated in vitro by a controlled differentiation process,which involves various signaling molecules and extracellular environment. Here,we describe a simple method to efficiently generate cardiomyocytes from human embryonic stem cells and human induced pluripotent stem cells.
View Publication
产品类型:
产品号#:
72552
72554
产品名:
IWP-4
IWP-4
文献
Corton JM et al. (APR 1995)
European journal of biochemistry / FEBS 229 2 558--65
5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells?
The AMP-activated protein kinase (AMPK) is believed to protect cells against environmental stress (e.g. heat shock) by switching off biosynthetic pathways,the key signal being elevation of AMP. Identification of novel targets for the kinase cascade would be facilitated by development of a specific agent for activating the kinase in intact cells. Incubation of rat hepatocytes with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) results in accumulation of the monophosphorylated derivative (5-aminoimidazole-4-carboxamide ribonucleoside; ZMP) within the cell. ZMP mimics both activating effects of AMP on AMPK,i.e. direct allosteric activation and promotion of phosphorylation by AMPK kinase. Unlike existing methods for activating AMPK in intact cells (e.g. fructose,heat shock),AICAR does not perturb the cellular contents of ATP,ADP or AMP. Incubation of hepatocytes with AICAR activates AMPK due to increased phosphorylation,causes phosphorylation and inactivation of a known target for AMPK (3-hydroxy-3-methylglutaryl-CoA reductase),and almost total cessation of two of the known target pathways,i.e. fatty acid and sterol synthesis. Incubation of isolated adipocytes with AICAR antagonizes isoprenaline-induced lipolysis. This provides direct evidence that the inhibition by AMPK of activation of hormone-sensitive lipase by cyclic-AMP-dependent protein kinase,previously demonstrated in cell-free assays,also operates in intact cells. AICAR should be a useful tool for identifying new target pathways and processes regulated by the protein kinase cascade.
View Publication
产品类型:
产品号#:
72704
产品名:
AICAR
文献
Bieback K et al. (JAN 2004)
Stem cells (Dayton,Ohio) 22 4 625--34
Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood.
Evidence has emerged that mesenchymal stem cells (MSCs) represent a promising population for supporting new clinical concepts in cellular therapy. However,attempts to isolate MSCs from umbilical cord blood (UCB) of full-term deliveries have previously either failed or been characterized by a low yield. We investigated whether cells with MSC characteristics and multi-lineage differentiation potential can be cultivated from UCB of healthy newborns and whether yields might be maximized by optimal culture conditions or by defining UCB quality criteria. Using optimized isolation and culture conditions,in up to 63% of 59 low-volume UCB units,cells showing a characteristic mesenchymal morphology and immune phenotype (MSC-like cells) were isolated. These were similar to control MSCs from adult bone marrow (BM). The frequency of MSC-like cells ranged from 0 to 2.3 clones per 1 x 10(8) mononuclear cells (MNCs). The cell clones proliferated extensively with at least 20 population doublings within eight passages. In addition,osteogenic and chondrogenic differentiation demonstrated a multi-lineage capacity comparable with BM MSCs. However,in contrast to MSCs,MSC-like cells showed a reduced sensitivity to undergo adipogenic differentiation. Crucial points to isolate MSC-like cells from UCB were a time from collection to isolation of less than 15 hours,a net volume of more than 33 ml,and an MNC count of more than 1 x 10(8) MNCs. Because MSC-like cells can be isolated at high efficacy from full-term UCB donations,we regard UCB as an additional stem cell source for experimental and potentially clinical purposes.
View Publication
产品类型:
产品号#:
05401
05402
05411
产品名:
MesenCult™ MSC基础培养基 (人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
文献
Sato H et al. ( 2016)
Scientific reports 6 31063
Microfabric Vessels for Embryoid Body Formation and Rapid Differentiation of Pluripotent Stem Cells.
Various scalable three-dimensional culture systems for regenerative medicine using human induced pluripotent stem cells (hiPSCs) have been developed to date. However,stable production of hiPSCs with homogeneous qualities still remains a challenge. Here,we describe a novel and simple embryoid body (EB) formation system using unique microfabricated culture vessels. Furthermore,this culture system is useful for high throughput EB formation and rapid generation of differentiated cells such as neural stem cells (NSCs) from hiPSCs. The period of NSC differentiation was significantly shortened under high EB density culture conditions. Simultaneous mass production of a pure population of NSCs was possible within 4 days. These results indicate that the novel culture system might not only become a unique tool to obtain new insights into developmental biology based on human stem cells,but also provide an important tractable platform for efficient and stable production of NSCs for clinical applications.
View Publication