Cell-surface marker signatures for the Isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells
BACKGROUND: Neural induction of human pluripotent stem cells often yields heterogeneous cell populations that can hamper quantitative and comparative analyses. There is a need for improved differentiation and enrichment procedures that generate highly pure populations of neural stem cells (NSC),glia and neurons. One way to address this problem is to identify cell-surface signatures that enable the isolation of these cell types from heterogeneous cell populations by fluorescence activated cell sorting (FACS). METHODOLOGY/PRINCIPAL FINDINGS: We performed an unbiased FACS- and image-based immunophenotyping analysis using 190 antibodies to cell surface markers on naïve human embryonic stem cells (hESC) and cell derivatives from neural differentiation cultures. From this analysis we identified prospective cell surface signatures for the isolation of NSC,glia and neurons. We isolated a population of NSC that was CD184(+)/CD271(-)/CD44(-)/CD24(+) from neural induction cultures of hESC and human induced pluripotent stem cells (hiPSC). Sorted NSC could be propagated for many passages and could differentiate to mixed cultures of neurons and glia in vitro and in vivo. A population of neurons that was CD184(-)/CD44(-)/CD15(LOW)/CD24(+) and a population of glia that was CD184(+)/CD44(+) were subsequently purified from cultures of differentiating NSC. Purified neurons were viable,expressed mature and subtype-specific neuronal markers,and could fire action potentials. Purified glia were mitotic and could mature to GFAP-expressing astrocytes in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: These findings illustrate the utility of immunophenotyping screens for the identification of cell surface signatures of neural cells derived from human pluripotent stem cells. These signatures can be used for isolating highly pure populations of viable NSC,glia and neurons by FACS. The methods described here will enable downstream studies that require consistent and defined neural cell populations.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Chen G et al. ( 2014)
PloS one 9 6 e98565
Human umbilical cord-derived mesenchymal stem cells do not undergo malignant transformation during long-term culturing in serum-free medium.
BACKGROUND Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are in the foreground as a preferable application for treating diseases. However,the safety of hUC-MSCs after long-term culturing in vitro in serum-free medium remains unclear. METHODS hUC-MSCs were separated by adherent tissue culture. hUC-MSCs were cultured in serum-free MesenCult-XF medium and FBS-bases DMEM complete medium. At the 1st,3rd,5th,8th,10th,and 15th passage,the differentiation of MSCs into osteogenic,chondrogenic,and adipogenic cells was detected,and MTT,surface antigens were measured. Tumorigenicity was analyzed at the 15th passage. Conventional karyotyping was performed at passage 0,8,and 15. The telomerase activity of hUC-MSCs at passage 1-15 was analyzed. RESULTS Flow cytometry analysis showed that very high expression was detected for CD105,CD73,and CD90 and very low expression for CD45,CD34,CD14,CD79a,and HLA-DR. MSCs could differentiate into osteocytes,chondrocytes,and adipocytes in vitro. There was no obvious chromosome elimination,displacement,or chromosomal imbalance as determined from the guidelines of the International System for Human Cytogenetic Nomenclature. Telomerase activity was down-regulated significantly when the culture time was prolonged. Further,no tumors formed in rats injected with hUC-MSCs (P15) cultured in serum-free and in serum-containing conditions. CONCLUSION Our data showed that hUC-MSCs met the International Society for Cellular Therapy standards for conditions of long-term in vitro culturing at P15. Since hUC-MSCs can be safely expanded in vitro and are not susceptible to malignant transformation in serum-free medium,these cells are suitable for cell therapy.
View Publication
产品类型:
产品号#:
产品名:
文献
Behar RZ et al. (NOV 2012)
Journal of Pharmacological and Toxicological Methods 66 3 238--245
A method for rapid dose-response screening of environmental chemicals using human embryonic stem cells
Introduction: Human embryonic stem cells (hESC) provide an invaluable model for assessing the effects of environmental chemicals and drugs on human prenatal development. However,hESC are difficult to adapt to 96-well plate screening assays,because they survive best when plated as colonies,which are difficult to count and plate accurately. The purpose of this study is to present an experimental method and analysis procedure to accomplish reliable screening of toxicants using hESC. Methods: We present a method developed to rapidly and easily determine the number of cells in small colonies of hESC spectrophotometerically and then accurately dispense equivalent numbers of cells in 96-well plates. The MTT assay was used to evaluate plating accuracy,and the method was tested using known toxicants. Results: The quality of the plate set-up and analysis procedure was evaluated with NIH plate validation and assessment software. All statistical parameters measured by the software were acceptable,and no drift or edge effects were observed. The 96-well plate MTT assay with hESC was tested by performing a dose-response screen of commercial products,which contain a variety of chemicals. The screen was done using single wells/dose,and the reliability of this method was demonstrated in a subsequent screen of the same products repeated three times. The single and triple screens were in good agreement,and NOAELs and IC50s could be determined from the single screen. The effects of vapor from volatile chemicals were studied,and methods to monitor and avoid vapor effects were incorporated into the assay. Discussion: Our method overcomes the difficulty of using hESC for reliable quantitative 96-well plate assays. It enables rapid dose-response screening using equipment that is commonly available in laboratories that culture hESC. This method could have a broad application in studies of environmental chemicals and drugs using hESC as models of prenatal development. ?? 2012 Elsevier Inc.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Choi SM et al. (JUN 2013)
Hepatology 57 6 2458--2468
Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells
UNLABELLED: Patient-specific induced pluripotent stem cells (iPSCs) represent a potential source for developing novel drug and cell therapies. Although increasing numbers of disease-specific iPSCs have been generated,there has been limited progress in iPSC-based drug screening/discovery for liver diseases,and the low gene-targeting efficiency in human iPSCs warrants further improvement. Using iPSC lines from patients with alpha-1 antitrypsin (AAT) deficiency,for which there is currently no drug or gene therapy available,we established a platform to discover new drug candidates and correct disease-causing mutation with a high efficiency. A high-throughput format screening assay,based on our hepatic differentiation protocol,was implemented to facilitate automated quantification of cellular AAT accumulation using a 96-well immunofluorescence reader. To expedite the eventual application of lead compounds to patients,we conducted drug screening utilizing our established library of clinical compounds (the Johns Hopkins Drug Library) with extensive safety profiles. Through a blind large-scale drug screening,five clinical drugs were identified to reduce AAT accumulation in diverse patient iPSC-derived hepatocyte-like cells. In addition,using the recently developed transcription activator-like effector nuclease technology,we achieved high gene-targeting efficiency in AAT-deficiency patient iPSCs with 25%-33% of the clones demonstrating simultaneous targeting at both diseased alleles. The hepatocyte-like cells derived from the gene-corrected iPSCs were functional without the mutant AAT accumulation. This highly efficient and cost-effective targeting technology will broadly benefit both basic and translational applications.backslashnbackslashnCONCLUSIONS: Our results demonstrated the feasibility of effective large-scale drug screening using an iPSC-based disease model and highly robust gene targeting in human iPSCs,both of which are critical for translating the iPSC technology into novel therapies for untreatable diseases.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Kang L et al. ( 2013)
Frontiers in immunology 4 MAY 101
Characterization and ex vivo Expansion of Human Placenta-Derived Natural Killer Cells for Cancer Immunotherapy.
Recent clinical studies suggest that adoptive transfer of donor-derived natural killer (NK) cells may improve clinical outcome in hematological malignancies and some solid tumors by direct anti-tumor effects as well as by reduction of graft versus host disease (GVHD). NK cells have also been shown to enhance transplant engraftment during allogeneic hematopoietic stem cell transplantation (HSCT) for hematological malignancies. The limited ex vivo expansion potential of NK cells from peripheral blood (PB) or umbilical cord blood (UCB) has however restricted their therapeutic potential. Here we define methods to efficiently generate NK cells from donor-matched,full-term human placenta perfusate (termed Human Placenta-Derived Stem Cell,HPDSC) and UCB. Following isolation from cryopreserved donor-matched HPDSC and UCB units,CD56+CD3- placenta-derived NK cells,termed pNK cells,were expanded in culture for up to 3 weeks to yield an average of 1.2 billion cells per donor that were textgreater80% CD56+CD3-,comparable to doses previously utilized in clinical applications. Ex vivo-expanded pNK cells exhibited a marked increase in anti-tumor cytolytic activity coinciding with the significantly increased expression of NKG2D,NKp46,and NKp44 (p textless 0.001,p textless 0.001,and p textless 0.05,respectively). Strong cytolytic activity was observed against a wide range of tumor cell lines in vitro. pNK cells display a distinct microRNA (miRNA) expression profile,immunophenotype,and greater anti-tumor capacity in vitro compared to PB NK cells used in recent clinical trials. With further development,pNK may represent a novel and effective cellular immunotherapy for patients with high clinical needs and few other therapeutic options.
View Publication
产品类型:
产品号#:
07900
19055
19055RF
产品名:
DNase I 溶液(1 mg/mL)
EasySep™人NK细胞富集试剂盒
RoboSep™ 人NK细胞富集试剂盒含滤芯吸头
文献
Sancho-Martinez I et al. (FEB 2016)
Nature communications 7 10743
Establishment of human iPSC-based models for the study and targeting of glioma initiating cells.
Glioma tumour-initiating cells (GTICs) can originate upon the transformation of neural progenitor cells (NPCs). Studies on GTICs have focused on primary tumours from which GTICs could be isolated and the use of human embryonic material. Recently,the somatic genomic landscape of human gliomas has been reported. RTK (receptor tyrosine kinase) and p53 signalling were found dysregulated in ∼90% and 86% of all primary tumours analysed,respectively. Here we report on the use of human-induced pluripotent stem cells (hiPSCs) for modelling gliomagenesis. Dysregulation of RTK and p53 signalling in hiPSC-derived NPCs (iNPCs) recapitulates GTIC properties in vitro. In vivo transplantation of transformed iNPCs leads to highly aggressive tumours containing undifferentiated stem cells and their differentiated derivatives. Metabolic modulation compromises GTIC viability. Last,screening of 101 anti-cancer compounds identifies three molecules specifically targeting transformed iNPCs and primary GTICs. Together,our results highlight the potential of hiPSCs for studying human tumourigenesis.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
James D et al. (MAR 2005)
Development (Cambridge,England) 132 6 1273--82
TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells.
Human embryonic stem cells (hESCs) self-renew indefinitely and give rise to derivatives of all three primary germ layers,yet little is known about the signaling cascades that govern their pluripotent character. Because it plays a prominent role in the early cell fate decisions of embryonic development,we have examined the role of TGFbeta superfamily signaling in hESCs. We found that,in undifferentiated cells,the TGFbeta/activin/nodal branch is activated (through the signal transducer SMAD2/3) while the BMP/GDF branch (SMAD1/5) is only active in isolated mitotic cells. Upon early differentiation,SMAD2/3 signaling is decreased while SMAD1/5 signaling is activated. We next tested the functional role of TGFbeta/activin/nodal signaling in hESCs and found that it is required for the maintenance of markers of the undifferentiated state. We extend these findings to show that SMAD2/3 activation is required downstream of WNT signaling,which we have previously shown to be sufficient to maintain the undifferentiated state of hESCs. Strikingly,we show that in ex vivo mouse blastocyst cultures,SMAD2/3 signaling is also required to maintain the inner cell mass (from which stem cells are derived). These data reveal a crucial role for TGFbeta signaling in the earliest stages of cell fate determination and demonstrate an interconnection between TGFbeta and WNT signaling in these contexts.
View Publication
产品类型:
产品号#:
72232
72234
产品名:
SB431542 (Hydrate)
SB431542(水合物)
文献
Shi Y et al. (JUN 2008)
Cell stem cell 2 6 525--8
A combined chemical and genetic approach for the generation of induced pluripotent stem cells.
Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation.
Hematopoietic stem cells (HSCs) are the basis of bone marrow transplantation and are attractive target cells for hematopoietic gene therapy,but these important clinical applications have been severely hampered by difficulties in ex vivo expansion of HSCs. In particular,the use of cord blood for adult transplantation is greatly limited by the number of HSCs. Previously we identified angiopoietin-like proteins and IGF-binding protein 2 (IGFBP2) as new hormones that,together with other factors,can expand mouse bone marrow HSCs in culture. Here,we measure the activity of multipotent human severe combined immunodeficient (SCID)-repopulating cells (SRCs) by transplantation into the nonobese diabetic SCID (NOD/SCID) mice; secondary transplantation was performed to evaluate the self-renewal potential of SRCs. A serum-free medium containing SCF,TPO,and FGF-1 or Flt3-L cannot significantly support expansion of the SRCs present in human cord blood CD133+ cells. Addition of either angiopoietin-like 5 or IGF-binding protein 2 to the cultures led to a sizable expansion of HSC numbers,as assayed by NOD/SCID transplantation. A serum-free culture containing SCF,TPO,FGF-1,angiopoietin-like 5,and IGFBP2 supports an approximately 20-fold net expansion of repopulating human cord blood HSCs,a number potentially applicable to several clinical processes including HSC transplantation.
View Publication
产品类型:
产品号#:
09600
09650
28600
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
L-Calc™有限稀释软件
文献
Rosenzweig M et al. (APR 2001)
Blood 97 7 1951--9
Induction of cytotoxic T lymphocyte and antibody responses to enhanced green fluorescent protein following transplantation of transduced CD34(+) hematopoietic cells.
Genetic modification of hematopoietic stem cells often results in the expression of foreign proteins in pluripotent progenitor cells and their progeny. However,the potential for products of foreign genes introduced into hematopoietic stem cells to induce host immune responses is not well understood. Gene marking and induction of immune responses to enhanced green fluorescent protein (eGFP) were examined in rhesus macaques that underwent nonmyeloablative irradiation followed by infusions of CD34(+) bone marrow cells transduced with a retroviral vector expressing eGFP. CD34(+) cells were obtained from untreated animals or from animals treated with recombinant human granulocyte colony-stimulating factor (G-CSF) alone or G-CSF and recombinant human stem cell factor. Levels of eGFP-expressing cells detected by flow cytometry peaked at 0.1% to 0.5% of all leukocytes 1 to 4 weeks after transplantation. Proviral DNA was detected in 0% to 17% of bone marrow--derived colony-forming units at periods of 5 to 18 weeks after transplantation. However,5 of 6 animals studied demonstrated a vigorous eGFP-specific cytotoxic T lymphocyte (CTL) response that was associated with a loss of genetically modified cells in peripheral blood,as demonstrated by both flow cytometry and polymerase chain reaction. The eGFP-specific CTL responses were MHC-restricted,mediated by CD8(+) lymphocytes,and directed against multiple epitopes. eGFP-specific CTLs were able to efficiently lyse autologous CD34(+) cells expressing eGFP. Antibody responses to eGFP were detected in 3 of 6 animals. These data document the potential for foreign proteins expressed in CD34(+) hematopoietic cells and their progeny to induce antibody and CTL responses in the setting of a clinically applicable transplantation protocol. (Blood. 2001;97:1951-1959)
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
文献
Safinia N et al. (FEB 2016)
Oncotarget 7 7 7563--77
Successful expansion of functional and stable regulatory T cells for immunotherapy in liver transplantation.
Strategies to prevent organ transplant rejection whilst minimizing long-term immunosuppression are currently under intense investigation with regulatory T cells (Tregs) nearing clinical application. The clinical trial,ThRIL,recently commenced at King's College London,proposes to use Treg cell therapy to induce tolerance in liver transplant recipients,the success of which has the potential to revolutionize the management of these patients and enable a future of drug-free transplants. This is the first report of the manufacture of clinical grade Tregs from prospective liver transplant recipients via a CliniMACS-based GMP isolation technique and expanded using anti-CD3/CD28 beads,IL-2 and rapamycin. We report the enrichment of a pure,stable population of Tregs (textgreater95% CD4(+)CD25(+)FOXP3(+)),reaching adequate numbers for their clinical application. Our protocol proved successful in,influencing the expansion of superior functional Tregs,as compared to freshly isolated cells,whilst also preventing their conversion to Th17 cells under pro-inflammatory conditions. We conclude with the manufacture of the final Treg product in the clinical research facility (CRF),a prerequisite for the clinical application of these cells. The data presented in this manuscript together with the much-anticipated clinical results from ThRIL,will undoubtedly inform the improved management of the liver transplant recipient.
View Publication
产品类型:
产品号#:
07930
07931
07940
07955
07959
产品名:
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
文献
Liu Y et al. (MAY 2011)
Nature protocols 6 5 640--55
OLIG gene targeting in human pluripotent stem cells for motor neuron and oligodendrocyte differentiation.
Pluripotent stem cells can be genetically labeled to facilitate differentiation studies. In this paper,we describe a gene-targeting protocol to knock in a GFP cassette into key gene loci in human pluripotent stem cells (hPSCs),and then use the genetically tagged hPSCs to guide in vitro differentiation,immunocytochemical and electrophysiological profiling and in vivo characterization after cell transplantation. The Olig transcription factors have key roles in the transcription regulatory pathways for the genesis of motor neurons (MNs) and oligodendrocytes (OLs). We have generated OLIG2-GFP hPSC reporter lines that reliably mark MNs and OLs for monitoring their sequential differentiation from hPSCs. The expression of the GFP reporter recapitulates the endogenous expression of OLIG genes. The in vitro characterization of fluorescence-activated cell sorting-purified cells is consistent with cells of the MN or OL lineages,depending on the stages at which they are collected. This protocol is efficient and reliable and usually takes 5-7 months to complete. The genetic tagging-differentiation methodology used herein provides a general framework for similar work for differentiation of hPSCs into other lineages.
View Publication