Pearce DJ and Bonnet D (SEP 2007)
Experimental hematology 35 9 1437--46
The combined use of Hoechst efflux ability and aldehyde dehydrogenase activity to identify murine and human hematopoietic stem cells.
OBJECTIVE: In murine hematopoietic tissue,direct repopulation experiments have demonstrated that the side population (SP) represents a remarkable enrichment of hematopoietic stem cells. Human SP has been phenotyped as negative for lineage antigens as well as CD34. However,in the 9 years since the original publication,no long-term hematopoietic reconstitution has been reported for the adult human SP/CD34(-) subset. Elevated levels of aldehyde dehydrogenase (ALDH) have been demonstrated in murine and human progenitor cells when compared to other hematopoietic cells. METHODS: Here,we report the phenotype of human cord blood SP cells. We established the technique of simultaneous phenotyping,Hoechst exclusion,and ALDH labeling on murine tissues. We then performed the simultaneous analysis of phenotype,SP,and ALDH activity on human cord blood and bone marrow cells. Finally,we analyzed the phenotype and functional potential of human cord blood ALDH(+) cells to determine whether Lin(-)/CD34(-) cells are identified via this technique. RESULTS: We demonstrate that human Lin(-)/CD34(-)/ALDH(+) cells are capable of long-term repopulation. Although the SP technique identifies cells that overlap with the ALDH(+) cell population,this is restricted to the CD34(+) cell subset. CONCLUSION: Hoechst exclusion ability does not seem to be the method of choice for the isolation of human hematopoietic stem cells.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™工具
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
文献
Naramura M et al. (SEP 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 37 16274--9
Rapidly fatal myeloproliferative disorders in mice with deletion of Casitas B-cell lymphoma (Cbl) and Cbl-b in hematopoietic stem cells.
Casitas B-cell lymphoma (Cbl)-family E3 ubiquitin ligases are negative regulators of tyrosine kinase signaling. Recent work has revealed a critical role of Cbl in the maintenance of hematopoietic stem cell (HSC) homeostasis,and mutations in CBL have been identified in myeloid malignancies. Here we show that,in contrast to Cbl or Cbl-b single-deficient mice,concurrent loss of Cbl and Cbl-b in the HSC compartment leads to an early-onset lethal myeloproliferative disease in mice. Cbl,Cbl-b double-deficient bone marrow cells are hypersensitive to cytokines,and show altered biochemical response to thrombopoietin. Thus,Cbl and Cbl-b play redundant but essential roles in HSC regulation,whose breakdown leads to hematological abnormalities that phenocopy crucial aspects of mutant Cbl-driven human myeloid malignancies.
View Publication
产品类型:
产品号#:
03234
产品名:
MethoCult™M3234
文献
Y. S. Park et al. (mar 2022)
Biochemistry and biophysics reports 29 101214
Enhancement of proliferation of human umbilical cord blood-derived CD34+ hematopoietic stem cells by a combination of hyper-interleukin-6 and small molecules.
Umbilical cord blood (UCB) is an alternative source of allogeneic hematopoietic stem cells (HSCs) for transplantation to treat various hematological disorders. The major limitation to the use of UCB-derived HSCs (UCB-HSCs) in transplantation,however,is the low numbers of HSCs in a unit of cord blood. To overcome this limitation,various cytokines or small molecules have been used to expand UCB-HSCs ex vivo. In this study,we investigated a synergistic effect of the combination of HIL-6,SR1,and UM171 on UCB-HSC culture and found that this combination resulted in the highest number of CD34+ cells. These results suggest that the combination of SR1,UM171 and HIL-6 exerts a synergistic effect in the proliferation of HSCs from UCB and thus,SR1,UM171 and HIL-6 is the most suitable combination for obtaining HSCs from UCB for clinical transplantation.
View Publication
产品类型:
产品号#:
产品名:
文献
Wang Z et al. (APR 2012)
Cell stem cell 10 4 440--454
Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells.
Nanog,Oct4,and Sox2 are the core regulators of mouse (m)ESC pluripotency. Although their basic importance in human (h)ESCs has been demonstrated,the mechanistic functions are not well defined. Here,we identify general and cell-line-specific requirements for NANOG,OCT4,and SOX2 in hESCs. We show that OCT4 regulates,and interacts with,the BMP4 pathway to specify four developmental fates. High levels of OCT4 enable self-renewal in the absence of BMP4 but specify mesendoderm in the presence of BMP4. Low levels of OCT4 induce embryonic ectoderm differentiation in the absence of BMP4 but specify extraembryonic lineages in the presence of BMP4. NANOG represses embryonic ectoderm differentiation but has little effect on other lineages,whereas SOX2 and SOX3 are redundant and repress mesendoderm differentiation. Thus,instead of being panrepressors of differentiation,each factor controls specific cell fates. Our study revises the view of how self-renewal is orchestrated in hESCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
文献
Su W et al. (JAN 2013)
1052 203--215
Bioluminescence Imaging of Human Embryonic Stem Cell-Derived Endothelial Cells for Treatment of Myocardial Infarction
Myocardial infarction is a leading cause of mortality and morbidity worldwide,and current treatments fail to address the underlying scarring and cell loss,which is a major cause of heart failure after infarction. The novel strategy,therapeutic angiogenesis and/or vasculogenesis with endothelial progenitor cells transplantation holds great promise to increase blood flow in ischemic areas,thus rebuild the injured heart and reverse the heart failure. Given the potential of self-renewal and differentiation into virtually all cell types,human embryonic stem cells (hESCs) may provide an alternate source of therapeutic cells by allowing the derivation of large numbers of endothelial cells for therapeutic angiogenesis and/or vasculogenesis of ischemic heart diseases. Moreover,to fully understand the fate of implanted hESCs or hESC derivatives,investigators need to monitor the motility of cells in living animals over time. In this chapter,we describe the application of bioluminescence reporter gene imaging to track the transplanted hESC-derived endothelial cells for treatment of myocardial infarction. The technology of inducing endothelial cells from hESCs will also be discussed.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Maherali N et al. (SEP 2008)
Cell stem cell 3 3 340--5
A high-efficiency system for the generation and study of human induced pluripotent stem cells.
Direct reprogramming of human fibroblasts to a pluripotent state has been achieved through ectopic expression of the transcription factors OCT4,SOX2,and either cMYC and KLF4 or NANOG and LIN28. Little is known,however,about the mechanisms by which reprogramming occurs,which is in part limited by the low efficiency of conversion. To this end,we sought to create a doxycycline-inducible lentiviral system to convert primary human fibroblasts and keratinocytes into human induced pluripotent stem cells (hiPSCs). hiPSCs generated with this system were molecularly and functionally similar to human embryonic stem cells (hESCs),demonstrated by gene expression profiles,DNA methylation status,and differentiation potential. While expression of the viral transgenes was required for several weeks in fibroblasts,we found that 10 days was sufficient for the reprogramming of keratinocytes. Using our inducible system,we developed a strategy to induce hiPSC formation at high frequency. Upon addition of doxycycline to hiPSC-derived differentiated cells,we obtained secondary" hiPSCs at a frequency at least 100-fold greater than the initial conversion. The ability to reprogram cells at high efficiency provides a unique platform to dissect the underlying molecular and biochemical processes that accompany nuclear reprogramming."
View Publication
产品类型:
产品号#:
72742
产品名:
Doxycycline (Hyclate)
文献
Garidou L et al. (SEP 2009)
Journal of virology 83 17 8905--15
Therapeutic memory T cells require costimulation for effective clearance of a persistent viral infection.
Persistent viral infections are a major health concern worldwide. During persistent infection,overwhelming viral replication and the rapid loss of antiviral T-cell function can prevent immune-mediated clearance of the infection,and therapies to reanimate the immune response and purge persistent viruses have been largely unsuccessful. Adoptive immunotherapy using memory T cells is a highly successful therapeutic approach to eradicate a persistent viral infection. Understanding precisely how therapeutically administered memory T cells achieve clearance should improve our ability to terminate states of viral persistence in humans. Mice persistently infected from birth with lymphocytic choriomeningitis virus are tolerant to the pathogen at the T-cell level and thus provide an excellent model to evaluate immunotherapeutic regimens. Previously,we demonstrated that adoptively transferred memory T cells require recipient dendritic cells to effectively purge an established persistent viral infection. However,the mechanisms that reactivate and sustain memory T-cell responses during clearance of such an infection remain unclear. Here we establish that therapeutic memory T cells require CD80 and CD86 costimulatory signals to efficiently clear an established persistent viral infection in vivo. Early blockade of costimulatory pathways with CTLA-4-Fc decreased the secondary expansion of virus-specific CD8(+) and CD4(+) memory T cells as well as their ability to produce antiviral cytokines and purge the persistent infection. Late costimulation blockade also reduced virus-specific T-cell numbers,illustrating that sustained interactions with costimulatory molecules is required for efficient T-cell expansion. These findings indicate that antiviral memory T cells require costimulation to efficiently clear a persistent viral infection and that costimulatory pathways can be targeted to modulate the magnitude of an adoptive immunotherapeutic regimen.
View Publication
产品类型:
产品号#:
产品名:
文献
Ohgushi M et al. (AUG 2010)
Cell stem cell 7 2 225--39
Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells.
Human embryonic stem cells (hESCs),unlike mouse ones (mESCs),are vulnerable to apoptosis upon dissociation. Here,we show that the apoptosis,which is of a nonanoikis type,is caused by ROCK-dependent hyperactivation of actomyosin and efficiently suppressed by the myosin inhibitor Blebbistatin. The actomyosin hyperactivation is triggered by the loss of E-cadherin-dependent intercellular contact and also observed in dissociated mouse epiblast-derived pluripotent cells but not in mESCs. We reveal that Abr,a unique Rho-GEF family factor containing a functional Rac-GAP domain,is an indispensable upstream regulator of the apoptosis and ROCK/myosin hyperactivation. Rho activation coupled with Rac inhibition is induced in hESCs upon dissociation,but not in Abr-depleted hESCs or mESCs. Furthermore,artificial Rho or ROCK activation with Rac inhibition restores the vulnerability of Abr-depleted hESCs to dissociation-induced apoptosis. Thus,the Abr-dependent Rho-high/Rac-low" state plays a decisive role in initiating the dissociation-induced actomyosin hyperactivation and apoptosis in hESCs."
View Publication
产品类型:
产品号#:
72402
72404
产品名:
(-)-Blebbistatin
(-)-Blebbistatin
文献
Luna JI et al. (MAY 2011)
Tissue engineering. Part C,Methods 17 5 579--88
Multiscale biomimetic topography for the alignment of neonatal and embryonic stem cell-derived heart cells.
Nano- and microscale topographical cues play critical roles in the induction and maintenance of various cellular functions,including morphology,adhesion,gene regulation,and communication. Recent studies indicate that structure and function at the heart tissue level is exquisitely sensitive to mechanical cues at the nano-scale as well as at the microscale level. Although fabrication methods exist for generating topographical features for cell culture,current techniques,especially those with nanoscale resolution,are typically complex,prohibitively expensive,and not accessible to most biology laboratories. Here,we present a tunable culture platform comprised of biomimetic wrinkles that simulate the heart's complex anisotropic and multiscale architecture for facile and robust cardiac cell alignment. We demonstrate the cellular and subcellular alignment of both neonatal mouse cardiomyocytes as well as those derived from human embryonic stem cells. By mimicking the fibrillar network of the extracellular matrix,this system enables monitoring of protein localization in real time and therefore the high-resolution study of phenotypic and physiologic responses to in-vivo like topographical cues.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Jeong J et al. (OCT 2014)
Experimental and Molecular Pathology 97 2 253--258
Patient-tailored application for Duchene muscular dystrophy on mdx mice based induced mesenchymal stem cells
Mesenchymal stem cells (MSCs) may be used as powerful tools for the repair and regeneration of damaged tissues. However,isolating tissue specific-derived MSCs may cause pain and increased infection rates in patients,and repetitive isolations may be required. To overcome these difficulties,we have examined alternative methods for MSC production. Here,we show that induced pluripotent stem cells (iPSCs) may be differentiated into mesenchymal stem cells (iMSCs) following exposure to SB431542. Purified iMSCs were administered to mdx mice to study skeletal muscle regeneration in a murine model of muscular dystrophy. Purified iMSCs displayed fibroblast-like morphology,formed three-dimensional spheroid structures,and expressed characteristic mesenchymal stem cell surface markers such as CD29,CD33,CD73,CD90,and CD105. Moreover,iMSCs were capable of differentiating into adipogenic,osteogenic,and chondrogenic lineages. Transplanting iMSC cells to tibialis anterior skeletal muscle tissue in mdx mice lowered oxidative damage as evidenced by a reduction in nitrotyrosine levels,and normal dystrophin expression levels were restored. This study demonstrates the therapeutic potential of purified iMSCs in skeletal muscle regeneration in mdx mice,and suggests that iPSCs are a viable alternate source for deriving MSCs as needed. textcopyright 2014 Elsevier Inc.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Zhu X et al. (SEP 2014)
Sci Rep 4 6420
An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system
The rapid generation of various species and strains of laboratory animals using CRISPR/Cas9 technology has dramatically accelerated the interrogation of gene function in vivo. So far,the dominant approach for genotyping of genome-modified animals has been the T7E1 endonuclease cleavage assay. Here,we present a polyacrylamide gel electrophoresis-based (PAGE) method to genotype mice harboring different types of indel mutations. We developed 6 strains of genome-modified mice using CRISPR/Cas9 system,and utilized this approach to genotype mice from F0 to F2 generation,which included single and multiplexed genome-modified mice. We also determined the maximal detection sensitivity for detecting mosaic DNA using PAGE-based assay as 0.5%. We further applied PAGE-based genotyping approach to detect CRISPR/Cas9-mediated on- and off-target effect in human 293T and induced pluripotent stem cells (iPSCs). Thus,PAGE-based genotyping approach meets the rapidly increasing demand for genotyping of the fast-growing number of genome-modified animals and human cell lines created using CRISPR/Cas9 system or other nuclease systems such as TALEN or ZFN.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Carpentier A et al. (MAR 2016)
Stem Cell Research 16 3 640--650
Hepatic differentiation of human pluripotent stem cells in miniaturized format suitable for high-throughput screen
The establishment of protocols to differentiate human pluripotent stem cells (hPSCs) including embryonic (ESC) and induced pluripotent (iPSC) stem cells into functional hepatocyte-like cells (HLCs) creates new opportunities to study liver metabolism,genetic diseases and infection of hepatotropic viruses (hepatitis B and C viruses) in the context of specific genetic background. While supporting efficient differentiation to HLCs,the published protocols are limited in terms of differentiation into fully mature hepatocytes and in a smaller-well format. This limitation handicaps the application of these cells to high-throughput assays. Here we describe a protocol allowing efficient and consistent hepatic differentiation of hPSCs in 384-well plates into functional hepatocyte-like cells,which remain differentiated for more than 3 weeks. This protocol affords the unique opportunity to miniaturize the hPSC-based differentiation technology and facilitates screening for molecules in modulating liver differentiation,metabolism,genetic network,and response to infection or other external stimuli.
View Publication