Ma Z et al. (JUL 2015)
Nature communications 6 May 7413
Self-organizing human cardiac microchambers mediated by geometric confinement.
Tissue morphogenesis and organ formation are the consequences of biochemical and biophysical cues that lead to cellular spatial patterning in development. To model such events in vitro,we use PEG-patterned substrates to geometrically confine human pluripotent stem cell colonies and spatially present mechanical stress. Modulation of the WNT/β-catenin pathway promotes spatial patterning via geometric confinement of the cell condensation process during epithelial-mesenchymal transition,forcing cells at the perimeter to express an OCT4+ annulus,which is coincident with a region of higher cell density and E-cadherin expression. The biochemical and biophysical cues synergistically induce self-organizing lineage specification and creation of a beating human cardiac microchamber confined by the pattern geometry. These highly defined human cardiac microchambers can be used to study aspects of embryonic spatial patterning,early cardiac development and drug-induced developmental toxicity.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Ingram RT et al. (JAN 1994)
Differentiation; research in biological diversity 55 2 153--63
Effects of transforming growth factor beta (TGF beta) and 1,25 dihydroxyvitamin D3 on the function, cytochemistry and morphology of normal human osteoblast-like cells.
Individually,transforming growth factor beta (TGF beta) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) alter the growth and differentiation of normal and transformed osteoblast-like (OB) cells. Although recent evidence suggests interactions between TGF beta and 1,25(OH)2D3 may occur,little is known of the individual or combined effects of these hormones on the expression of the osteoblast phenotype at the cytochemical and biochemical levels in normal human OB (hOB) cells. Primary cultures of hOBs were treated with TGF beta (0.001-10 ng/ml) and 1,25(OH)2D3 (0.1 pM-100 nM) either alone or in combination. TGF beta and 1,25(OH)2D3 stimulated spindle-shaped cells to become stellate in appearance and increased the number of cytoplasmic processes. TGF beta increased 3H-thymidine incorporation and 1,25(OH)2D3 reduced this effect. Conversely,procollagen type-I synthesis and secretion were increased in a dose-dependent manner in the presence of TGF beta but were not significantly affected in the presence of 1,25(OH)2D3. TGF beta and 1,25(OH)2D3 each marginally increased alkaline phosphatase (ALP) activity,but the combination synergistically increased ALP activity in a dose- and time-dependent manner at the cytochemical and biochemical level (three to tenfold over vehicle controls; n = 12). In contrast,TGF beta reduced 1,25(OH)2D3-stimulated osteocalcin secretion. These data suggest that TGF beta stimulates hOB cells to actively produce collagen matrix and proliferate. The combination of TGF beta and 1,25(OH)2D3,however,produces a synergistic increase in ALP activity and maintenance of collagen synthesis. 1,25(OH)2D3 stimulation may induce cells to advance to an endstage where cell proliferation is reduced and osteocalcin expression is promoted. Interactions between TGF beta and 1,25(OH)2D3 may represent important steps in the regulation of osteoblast differentiation and matrix production.
View Publication
产品类型:
产品号#:
72412
产品名:
骨化三醇(Calcitriol)
Tzeng Y-S et al. (JAN 2011)
Blood 117 2 429--39
Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression.
The C-X-C-type chemokine Cxcl12,also known as stromal cell-derived factor-1,plays a critical role in hematopoiesis during fetal development. However,the functional requirement of Cxcl12 in the adult hematopoietic stem/progenitor cell (HSPC) regulation was still unclear. In this report,we developed a murine Cxcl12 conditional deletion model in which the target gene can be deleted at the adult stage. We found that loss of stroma-secreted Cxcl12 in the adult led to expansion of the HSPC population as well as a reduction in long-term quiescent stem cells. In Cxcl12-deficient bone marrow,HSPCs were absent along the endosteal surface,and blood cell regeneration occurred predominantly in the perisinusoidal space after 5-fluorouracil myelosuppression challenge. Our results indicate that Cxcl12 is required for HSPC homeostasis regulation and is an important factor for osteoblastic niche organization in adult stage bone marrow.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Sieling PA et al. (JAN 2003)
Journal of immunology (Baltimore,Md. : 1950) 170 1 194--200
Toll-like receptor 2 ligands as adjuvants for human Th1 responses.
Bacterial lipopeptides (bLPs) are increasingly used as adjuvants to activate cell-mediated immune responses to foreign Ags. To explore mechanisms whereby bLPs adjuvant T cell responses,we stimulated human PBMCs with bLPs. We found that bLPs stimulate T cells to proliferate and produce IFN-gamma in an accessory cell-dependent manner and in the absence of exogenous protein Ags. The ability of bLPs to stimulate T cell proliferation was Toll-like receptor 2 dependent and required IL-12,interaction with costimulatory molecules,and MHC proteins. Our data suggest that bLPs adjuvant adaptive Th1 responses by enhancing Ag presentation of endogenous peptides.
View Publication
Chen X et al. (SEP 2015)
Stem Cell Research 15 2 395--402
OP9-Lhx2 stromal cells facilitate derivation of hematopoietic progenitors both in vitro and in vivo
Generating engraftable hematopoietic stem cells (HSCs) from pluripotent stem cells (PSCs) is an ideal approach for obtaining induced HSCs for cell therapy. However,the path from PSCs to robustly induced HSCs (iHSCs) in vitro remains elusive. We hypothesize that the modification of hematopoietic niche cells by transcription factors facilitates the derivation of induced HSCs from PSCs. The Lhx2 transcription factor is expressed in fetal liver stromal cells but not in fetal blood cells. Knocking out Lhx2 leads to a fetal hematopoietic defect in a cell non-autonomous role. In this study,we demonstrate that the ectopic expression of Lhx2 in OP9 cells (OP9-Lhx2) accelerates the hematopoietic differentiation of PSCs. OP9-Lhx2 significantly increased the yields of hematopoietic progenitor cells via co-culture with PSCs in vitro. Interestingly,the co-injection of OP9-Lhx2 and PSCs into immune deficient mice also increased the proportion of hematopoietic progenitors via the formation of teratomas. The transplantation of phenotypic HSCs from OP9-Lhx2 teratomas but not from the OP9 control supported a transient repopulating capability. The upregulation of Apln gene by Lhx2 is correlated to the hematopoietic commitment property of OP9-Lhx2. Furthermore,the enforced expression of Apln in OP9 cells significantly increased the hematopoietic differentiation of PSCs. These results indicate that OP9-Lhx2 is a good cell line for regeneration of hematopoietic progenitors both in vitro and in vivo.
View Publication
Single-gene transgenic mouse strains for reprogramming adult somatic cells.
We report transgenic mouse models in which three or four reprogramming factors are expressed from a single genomic locus using a drug-inducible transgene. Multiple somatic cell types can be directly reprogrammed to generate induced pluripotent stem cells (iPSCs) by culture in doxycycline. Because reprogramming factors are carried on a single polycistronic construct,the mice can be easily maintained,and the transgene can be easily transferred into other genetic backgrounds.
View Publication
产品类型:
产品号#:
72742
产品名:
Doxycycline (Hyclate)
Andrianto et al. ( 2022)
Journal of stem cells & regenerative medicine 18 1 21--26
Isolation and Culture of Non-adherent Cells for Cell Reprogramming.
Coronary heart disease (CHD) is a leading cause of death globally,while its current management is limited to reducing the myocardial infarction area without actually replacing dead cardiomyocytes. Direct cell reprogramming is a method of cellular cardiomyoplasty which aims for myocardial tissue regeneration,and CD34+ cells are one of the potential sources due to their shared embryonic origin with cardiomyocytes. However,the isolation and culture of non-adherent CD34+ cells is crucial to obtain adequate cells for high-efficiency genetic modification. This study aimed to investigate the optimal method for isolation and culture of CD34+ peripheral blood cells using certain culture media. A peripheral blood sample was obtained from a healthy subject and underwent pre-enrichment,isolation,and expansion. The culture was subsequently observed for their viability,adherence,and confluence. Day 0 observation of the culture showed a healthy CD34+ cell with a round cell shape,without any adherent cells present yet. Day 4 of observation showed that CD34+ cells within the blood plasma medium became adherent,indicated by their transformations into spindle or oval morphologies. Meanwhile,CD34+ cells in vitronectin and fibronectin media showed no adherent cells and many of them died. Day 7 observation revealed more adherent CD34+ cells in blood plasma medium,and which had 75% of confluence. In conclusion,the CD34+ cells that were isolated using a combination of density and magnetic methods may be viable and adequately adhere in culture using blood plasma medium,but not in cultures using fibronectin and vitronectin.
View Publication
Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro.
Progress toward finding a cure for muscle diseases has been slow because of the absence of relevant cellular models and the lack of a reliable source of muscle progenitors for biomedical investigation. Here we report an optimized serum-free differentiation protocol to efficiently produce striated,millimeter-long muscle fibers together with satellite-like cells from human pluripotent stem cells (hPSCs) in vitro. By mimicking key signaling events leading to muscle formation in the embryo,in particular the dual modulation of Wnt and bone morphogenetic protein (BMP) pathway signaling,this directed differentiation protocol avoids the requirement for genetic modifications or cell sorting. Robust myogenesis can be achieved in vitro within 1 month by personnel experienced in hPSC culture. The differentiating culture can be subcultured to produce large amounts of myogenic progenitors amenable to numerous downstream applications. Beyond the study of myogenesis,this differentiation method offers an attractive platform for the development of relevant in vitro models of muscle dystrophies and drug screening strategies,as well as providing a source of cells for tissue engineering and cell therapy approaches.
View Publication
Brief report: efficient generation of hematopoietic precursors and progenitors from human pluripotent stem cell lines.
By mimicking embryonic development of the hematopoietic system,we have developed an optimized in vitro differentiation protocol for the generation of precursors of hematopoietic lineages and primitive hematopoietic cells from human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSCs). Factors such as cytokines,extra cellular matrix components,and small molecules as well as the temporal association and concentration of these factors were tested on seven different human ESC and iPSC lines. We report the differentiation of up to 84% human CD45+ cells (average 41% ± 16%,from seven pluripotent lines) from the differentiation culture,including significant numbers of primitive CD45+/CD34+ and CD45+/CD34+/CD38- hematopoietic progenitors. Moreover,the numbers of hematopoietic progenitor cells generated,as measured by colony forming unit assays,were comparable to numbers obtained from fresh umbilical cord blood mononuclear cell isolates on a per CD45+ cell basis. Our approach demonstrates highly efficient generation of multipotent hematopoietic progenitors with among the highest efficiencies reported to date (CD45+/CD34+) using a single standardized differentiation protocol on several human ESC and iPSC lines. Our data add to the cumulating evidence for the existence of an in vitro derived precursor to the hematopoietic stem cell (HSC) with limited engrafting ability in transplanted mice but with multipotent hematopoietic potential. Because this protocol efficiently expands the preblood precursors and hematopoietic progenitors,it is ideal for testing novel factors for the generation and expansion of definitive HSCs with long-term repopulating ability.
View Publication
产品类型:
产品号#:
72192
72194
产品名:
前列腺素E2(Prostaglandin E2)
前列腺素E2(Prostaglandin E2)
Webb CF et al. (MAR 2011)
Molecular and cellular biology 31 5 1041--53
The ARID family transcription factor bright is required for both hematopoietic stem cell and B lineage development.
Bright/Arid3a has been characterized both as an activator of immunoglobulin heavy-chain transcription and as a proto-oncogene. Although Bright expression is highly B lineage stage restricted in adult mice,its expression in the earliest identifiable hematopoietic stem cell (HSC) population suggests that Bright might have additional functions. We showed that textgreater99% of Bright(-/-) embryos die at midgestation from failed hematopoiesis. Bright(-/-) embryonic day 12.5 (E12.5) fetal livers showed an increase in the expression of immature markers. Colony-forming assays indicated that the hematopoietic potential of Bright(-/-) mice is markedly reduced. Rare survivors of lethality,which were not compensated by the closely related paralogue Bright-derived protein (Bdp)/Arid3b,suffered HSC deficits in their bone marrow as well as B lineage-intrinsic developmental and functional deficiencies in their peripheries. These include a reduction in a natural antibody,B-1 responses to phosphocholine,and selective T-dependent impairment of IgG1 class switching. Our results place Bright/Arid3a on a select list of transcriptional regulators required to program both HSC and lineage-specific differentiation.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Johansson BM and Wiles MV (JAN 1995)
Molecular and cellular biology 15 1 141--51
Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development.
Xenopus in vitro studies have implicated both transforming growth factor beta (TGF-beta) and fibroblast growth factor (FGF) families in mesoderm induction. Although members of both families are present during mouse mesoderm formation,there is little evidence for their functional role in mesoderm induction. We show that mouse embryonic stem cells,which resemble primitive ectoderm,can differentiate to mesoderm in vitro in a chemically defined medium (CDM) in the absence of fetal bovine serum. In CDM,this differentiation is responsive to TGF-beta family members in a concentration-dependent manner,with activin A mediating the formation of dorsoanterior-like mesoderm and bone morphogenetic protein 4 mediating the formation of ventral mesoderm,including hematopoietic precursors. These effects are not observed in CDM alone or when TGF-beta 1,-beta 2,or -beta 3,acid FGF,or basic FGF is added individually to CDM. In vivo,at day 6.5 of mouse development,activin beta A RNA is detectable in the decidua and bone morphogenetic protein 4 RNA is detectable in the egg cylinder. Together,our data strongly implicate the TGF-beta family in mammalian mesoderm development and hematopoietic cell formation.
View Publication