Liu C et al. (SEP 2013)
Biochemical and Biophysical Research Communications 439 1 154--159
Neural differentiation of human embryonic stem cells as an in vitro tool for the study of the expression patterns of the neuronal cytoskeleton during neurogenesis
The neural differentiation of human embryonic stem cells (ESCs) is a potential tool for elucidating the key mechanisms involved in human neurogenesis. Nestin and ??-III-tubulin,which are cytoskeleton proteins,are marker proteins of neural stem cells (NSCs) and neurons,respectively. However,the expression patterns of nestin and ??-III-tubulin in neural derivatives from human ESCs remain unclear. In this study,we found that neural progenitor cells (NPCs) derived from H9 cells express high levels of nestin and musashi-1. In contrast,??-III-tubulin was weakly expressed in a few NPCs. Moreover,in these cells,nestin formed filament networks,whereas ??-III-tubulin was distributed randomly as small particles. As the differentiation proceeded,the nestin filament networks and the ??-III-tubulin particles were found in both the cell soma and the cellular processes. Moreover,the colocalization of nestin and ??-III-tubulin was found mainly in the cell processes and neurite-like structures and not in the cell soma. These results may aid our understanding of the expression patterns of nestin and ??-III-tubulin during the neural differentiation of H9 cells. ?? 2013 Elsevier Inc.
View Publication
Preclinical characterization and phase 1 results of ADG106 in patients with advanced solid tumors and non-Hodgkin’s lymphoma
SummaryADG106,a ligand-blocking agonistic antibody targeting CD137 (4-1BB),exhibits promising results in preclinical studies,demonstrating tumor suppression in various animal models and showing a balanced profile between safety and efficacy. This phase 1 study enrolls 62 patients with advanced malignancies,revealing favorable tolerability up to the 5.0 mg/kg dose level. Dose-limiting toxicity occurs in only one patient (6.3%) at 10.0 mg/kg,resulting in grade 4 neutropenia. The most frequent treatment-related adverse events include leukopenia (22.6%),neutropenia (22.6%),elevated alanine aminotransferase (22.6%),rash (21.0%),itching (17.7%),and elevated aspartate aminotransferase (17.7%). The overall disease control rates are 47.1% for advanced solid tumors and 54.5% for non-Hodgkin’s lymphoma. Circulating biomarkers suggest target engagement by ADG106 and immune modulation of circulating T,B,and natural killer cells and cytokines interferon γ and interleukin-6,which may affect the probability of clinical efficacy. ADG106 has a manageable safety profile and preliminary anti-tumor efficacy in patients with advanced cancers (this study was registered at ClinicalTrials.gov: NCT03802955). Graphical abstract Highlights•ADG106 is a ligand-blocking agonistic antibody targeting CD137•ADG106 enhances cytotoxic T cell activity within the tumor environment•ADG106 shows manageable safety and preliminary anti-tumor efficacy in this phase 1 study Ma et al. demonstrate the safety,efficacy,and survival benefits of ADG106,a fully human agonistic monoclonal IgG4 antibody targeting a unique and crossreactive epitope of CD137,in patients with advanced solid tumors and non-Hodgkin’s lymphoma. They show that ADG106 exhibits a favorable safety profile and encourages anti-tumor activity.
View Publication
产品类型:
产品号#:
17953
产品名:
EasySep™人CD8+ T细胞分选试剂盒
Beeton C et al. (NOV 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 46 17414--9
Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases.
Autoreactive memory T lymphocytes are implicated in the pathogenesis of autoimmune diseases. Here we demonstrate that disease-associated autoreactive T cells from patients with type-1 diabetes mellitus or rheumatoid arthritis (RA) are mainly CD4+ CCR7- CD45RA- effector memory T cells (T(EM) cells) with elevated Kv1.3 potassium channel expression. In contrast,T cells with other antigen specificities from these patients,or autoreactive T cells from healthy individuals and disease controls,express low levels of Kv1.3 and are predominantly naïve or central-memory (T(CM)) cells. In T(EM) cells,Kv1.3 traffics to the immunological synapse during antigen presentation where it colocalizes with Kvbeta2,SAP97,ZIP,p56(lck),and CD4. Although Kv1.3 inhibitors [ShK(L5)-amide (SL5) and PAP1] do not prevent immunological synapse formation,they suppress Ca2+-signaling,cytokine production,and proliferation of autoantigen-specific T(EM) cells at pharmacologically relevant concentrations while sparing other classes of T cells. Kv1.3 inhibitors ameliorate pristane-induced arthritis in rats and reduce the incidence of experimental autoimmune diabetes in diabetes-prone (DP-BB/W) rats. Repeated dosing with Kv1.3 inhibitors in rats has not revealed systemic toxicity. Further development of Kv1.3 blockers for autoimmune disease therapy is warranted.
View Publication
Friedel T et al. (MAR 2016)
Stem cells and development 25 9 729--39
CD30 Receptor-Targeted Lentiviral Vectors for Human Induced Pluripotent Stem Cell-Specific Gene Modification.
Cultures of induced pluripotent stem cells (iPSCs) often contain cells of varying grades of pluripotency. We present novel lentiviral vectors targeted to the surface receptor CD30 (CD30-LV) to transfer genes into iPSCs that are truly pluripotent as demonstrated by marker gene expression. We demonstrate that CD30 expression is restricted to SSEA4high cells of human iPSC cultures and a human embryonic stem cell line. When CD30-LV was added to iPSCs during routine cultivation,efficient and exclusive transduction of cells positive for the pluripotency marker Oct-4 was achieved,while retaining their pluripotency. When added during the reprogramming process,CD30-LV solely transduced cells that became fully reprogrammed iPSCs as confirmed by co-expression of endogenous Nanog and the reporter gene. Thus,CD30-LV may serve as novel tool for the selective gene transfer into pluripotent stem cells with broad applications in basic and therapeutic research.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Shirato K et al. ( 2017)
Virology November 0--1
Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry
Human coronaviruses (HCoVs) enter cells via two distinct pathways: the endosomal pathway using cathepsins to activate spike protein and the cell-surface or early endosome pathway using extracellular proteases such as transmembrane protease serine 2 (TMPRSS2). We previously reported that clinical isolates of HCoV-229E preferred cell-surface TMPRSS2 to endosomal cathepsin for cell entry,and that they acquired the ability to use cathepsin L by repeated passage in cultured cells and were then able to enter cells via the endosomal pathway. Here,we show that clinical isolates of HCoV-OC43 and -HKU1 preferred the cell-surface TMRRSS2 to endosomal cathepsins for cell entry,similar to HCoV-229E. In addition,the cell-culture-adapted HCoV-OC43 lost the ability to infect and replicate in air-liquid interface cultures of human bronchial tracheal epithelial cells. These results suggest that circulating HCoVs in the field generally use cell-surface TMPRSS2 for cell entry,not endosomal cathepsins,in human airway epithelial cells.
View Publication