Human mesenchymal stem cells modulate B-cell functions.
Human mesenchymal stem cells (hMSCs) suppress T-cell and dendritic-cell function and represent a promising strategy for cell therapy of autoimmune diseases. Nevertheless,no information is currently available on the effects of hMSCs on B cells,which may have a large impact on the clinical use of these cells. hMSCs isolated from the bone marrow and B cells purified from the peripheral blood of healthy donors were cocultured with different B-cell tropic stimuli. B-cell proliferation was inhibited by hMSCs through an arrest in the G0/G1 phase of the cell cycle and not through the induction of apoptosis. A major mechanism of B-cell suppression was hMSC production of soluble factors,as indicated by transwell experiments. hMSCs inhibited B-cell differentiation because IgM,IgG,and IgA production was significantly impaired. CXCR4,CXCR5,and CCR7 B-cell expression,as well as chemotaxis to CXCL12,the CXCR4 ligand,and CXCL13,the CXCR5 ligand,were significantly down-regulated by hMSCs,suggesting that these cells affect chemotactic properties of B cells. B-cell costimulatory molecule expression and cytokine production were unaffected by hMSCs. These results further support the potential therapeutic use of hMSCs in immune-mediated disorders,including those in which B cells play a major role.
View Publication
产品类型:
产品号#:
05401
05402
05411
产品名:
MesenCult™ MSC基础培养基 (人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
Zhao H et al. (MAY 2013)
PLoS ONE 8 5 e64503
Induced Pluripotency of Human Prostatic Epithelial Cells
Induced pluripotent stem (iPS) cells are a valuable resource for discovery of epigenetic changes critical to cell type-specific differentiation. Although iPS cells have been generated from other terminally differentiated cells,the reprogramming of normal adult human basal prostatic epithelial (E-PZ) cells to a pluripotent state has not been reported. Here,we attempted to reprogram E-PZ cells by forced expression of Oct4,Sox2,c-Myc,and Klf4 using lentiviral vectors and obtained embryonic stem cell (ESC)-like colonies at a frequency of 0.01%. These E-PZ-iPS-like cells with normal karyotype gained expression of pluripotent genes typical of iPS cells (Tra-1-81,SSEA-3,Nanog,Sox2,and Oct4) and lost gene expression characteristic of basal prostatic epithelial cells (CK5,CK14,and p63). E-PZ-iPS-like cells demonstrated pluripotency by differentiating into ectodermal,mesodermal,and endodermal cells in vitro,although lack of teratoma formation in vivo and incomplete demethylation of pluripotency genes suggested only partial reprogramming. Importantly,E-PZ-iPS-like cells re-expressed basal epithelial cell markers (CD44,p63,MAO-A) in response to prostate-specific medium in spheroid culture. Androgen induced expression of androgen receptor (AR),and co-culture with rat urogenital sinus further induced expression of prostate-specific antigen (PSA),a hallmark of secretory cells,suggesting that E-PZ-iPS-like cells have the capacity to differentiate into prostatic basal and secretory epithelial cells. Finally,when injected into mice,E-PZ-iPS-like cells expressed basal epithelial cell markers including CD44 and p63. When co-injected with rat urogenital mesenchyme,E-PZ-iPS-like cells expressed AR and expression of p63 and CD44 was repressed. DNA methylation profiling identified epigenetic changes in key pathways and genes involved in prostatic differentiation as E-PZ-iPS-like cells converted to differentiated AR- and PSA-expressing cells. Our results suggest that iPS-like cells derived from prostatic epithelial cells are pluripotent and capable of prostatic differentiation; therefore,provide a novel model for investigating epigenetic changes involved in prostate cell lineage specification.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Yazdi PG et al. (AUG 2015)
PloS one 10 8 e0136314
Nucleosome Organization in Human Embryonic Stem Cells.
The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA,nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently,there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions,we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription�
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Gartner S and Kaplan HS (AUG 1980)
Proceedings of the National Academy of Sciences of the United States of America 77 8 4756--9
Long-term culture of human bone marrow cells.
A method has been described for the long-term culture of human bone marrow cells in liquid medium. Hematopoiesis,as measured by the production of granulocytic-macrophage progenitor cells (CFUc),continued for at least 20 weeks and was dependent upon the presence of a marrow-derived adherent layer of cells. As in the case of murine marrow liquid cultures,the adherent layer consisted of mononuclear phagocytic cells,endothelial cells,and lipid-laden adipocytes,the latter being essential for long-term hematopoiesis. Optimal growth conditions included McCoy's medium supplemented with fetal bovine serum,horse serum,and hydrocortisone and incubation at 33 degrees C. Horse serum in conjunction with hydrocortisone appeared essential for the growth of adipocytes.
View Publication
Rodin S et al. (JUN 2010)
Nature biotechnology 28 6 611--5
Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511.
We describe a system for culturing human embryonic stem (hES) cells and induced pluripotent stem (iPS) cells on a recombinant form of human laminin-511,a component of the natural hES cell niche. The system is devoid of animal products and feeder cells and contains only one undefined component,human albumin. The hES cells self-renewed with normal karyotype for at least 4 months (20 passages),after which the cells could produce teratomas containing cell lineages of all three germ layers. When plated on laminin-511 in small clumps,hES cells spread out in a monolayer,maintaining cellular homogeneity with approximately 97% OCT4-positive cells. Adhesion of hES cells was dependent on alpha6beta1 integrin. The use of homogeneous monolayer hES or iPS cell cultures provides more controllable conditions for the design of differentiation methods. This xeno-free and feeder-free system may be useful for the development of cell lineages for therapeutic purposes.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Schrenk-Siemens K et al. (JAN 2014)
Nature neuroscience 18 1 10--16
PIEZO2 is required for mechanotransduction in human stem cell-derived touch receptors.
Human sensory neurons are inaccessible for functional examination,and thus little is known about the mechanisms mediating touch sensation in humans. Here we demonstrate that the mechanosensitivity of human embryonic stem (hES) cell-derived touch receptors depends on PIEZO2. To recapitulate sensory neuron development in vitro,we established a multistep differentiation protocol and generated sensory neurons via the intermediate production of neural crest cells derived from hES cells or human induced pluripotent stem (hiPS) cells. The generated neurons express a distinct set of touch receptor-specific genes and convert mechanical stimuli into electrical signals,their most salient characteristic in vivo. Strikingly,mechanosensitivity is lost after CRISPR/Cas9-mediated PIEZO2 gene deletion. Our work establishes a model system that resembles human touch receptors,which may facilitate mechanistic analysis of other sensory subtypes and provide insight into developmental programs underlying sensory neuron diversity.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
C. Pleguezuelos-Manzano et al. (Jan 2025)
Scientific Reports 15
Dual RNA sequencing of a co-culture model of Pseudomonas aeruginosa and human 2D upper airway organoids
Pseudomonas aeruginosa is a Gram-negative bacterium that is notorious for airway infections in cystic fibrosis (CF) subjects. Bacterial quorum sensing (QS) coordinates virulence factor expression and biofilm formation at population level. Better understanding of QS in the bacterium-host interaction is required. Here,we set up a new P. aeruginosa infection model,using 2D upper airway nasal organoids that were derived from 3D organoids. Using dual RNA-sequencing,we dissected the interaction between organoid epithelial cells and WT or QS-mutant P. aeruginosa strains. Since only a single healthy individual and a single CF subject were used as donors for the organoids,conclusions about CF-specific effects could not be deduced. However,P. aeruginosa induced epithelial inflammation,whereas QS signaling did not affect the epithelial airway cells. Conversely,the epithelium influenced infection-related processes of P. aeruginosa,including QS-mediated regulation. Comparison of our model with samples from the airways of CF subjects indicated that our model recapitulates important aspects of infection in vivo. Hence,the 2D airway organoid infection model is relevant and may help to reduce the future burden of P. aeruginosa infections in CF. The online version contains supplementary material available at 10.1038/s41598-024-82500-w.
View Publication
产品类型:
产品号#:
05001
05021
05022
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
Li C-S et al. (MAR 2016)
Biomaterials 83 194--206
Fibromodulin reprogrammed cells: A novel cell source for bone regeneration.
Pluripotent or multipotent cell-based therapeutics are vital for skeletal reconstruction in non-healing critical-sized defects since the local endogenous progenitor cells are not often adequate to restore tissue continuity or function. However,currently available cell-based regenerative strategies are hindered by numerous obstacles including inadequate cell availability,painful and invasive cell-harvesting procedures,and tumorigenesis. Previously,we established a novel platform technology for inducing a quiescent stem cell-like stage using only a single extracellular proteoglycan,fibromodulin (FMOD),circumventing gene transduction. In this study,we further purified and significantly increased the reprogramming rate of the yield multipotent FMOD reprogrammed (FReP) cells. We also exposed the 'molecular blueprint' of FReP cell osteogenic differentiation by gene profiling. Radiographic analysis showed that implantation of FReP cells into a critical-sized SCID mouse calvarial defect,contributed to the robust osteogenic capability of FReP cells in a challenging clinically relevant traumatic scenario in vivo. The persistence,engraftment,and osteogenesis of transplanted FReP cells without tumorigenesis in vivo were confirmed by histological and immunohistochemical staining. Taken together,we have provided an extended potency,safety,and molecular profile of FReP cell-based bone regeneration. Therefore,FReP cells present a high potential for cellular and gene therapy products for bone regeneration.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
05872
05873
05893
85850
85857
85870
85875
27845
27945
27840
27865
27940
27965
产品名:
AggreWell™ EB形成培养基
mTeSR™1
mTeSR™1
Hwang Y et al. (JUL 2011)
Regenerative medicine 6 4 505--24
Engineered microenvironments for self-renewal and musculoskeletal differentiation of stem cells.
Stem cells hold great promise for therapies aimed at regenerating damaged tissue,drug screening and studying in vitro models of human disease. However,many challenges remain before these applications can become a reality. One such challenge is developing chemically defined and scalable culture conditions for derivation and expansion of clinically viable human pluripotent stem cells,as well as controlling their differentiation with high specificity. Interaction of stem cells with their extracellular microenvironment plays an important role in determining their differentiation commitment and functions. Regenerative medicine approaches integrating cell-matrix and cell-cell interactions,and soluble factors could lead to development of robust microenvironments to control various cellular responses. Indeed,several of these recent developments have provided significant insight into the design of microenvironments that can elicit the targeted cellular response. In this article,we will focus on some of these developments with an emphasis on matrix-mediated expansion of human pluripotent stem cells while maintaining their pluripotency. We will also discuss the role of matrix-based cues and cell-cell interactions in the form of soluble signals in directing stem cell differentiation into musculoskeletal lineages.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Maciejewski JP et al. (SEP 1996)
Blood 88 6 1983--91
A severe and consistent deficit in marrow and circulating primitive hematopoietic cells (long-term culture-initiating cells) in acquired aplastic anemia.
We examined the stem cell compartment of patients with acquired aplastic anemia (AA) using the long-term culture-initiating cell assay (LTC-IC),in parallel with measurements of CD34+ cells and mature hematopoietic progenitors. Secondary colonies from cells surviving 5 weeks of long-term bone marrow culture (LTBMC) were determined for the peripheral blood (PB) of 68 AA patients and 13 normal controls and for BM of 49 AA patients and 14 controls; because of low cell numbers,formal limiting dilution analysis could only be performed in 10 patients. The relationship of cell input in LTBMC and the output of secondary colonies was linear,allowing quantification of LTC-IC number from bulk cultures. Secondary colony formation was markedly abnormal in severe AA. In contrast to 7.8 colony-forming cells (CFC)/10(5) mononuclear cells in normal BM and 0.14 CFC/10(5) normal PB mononuclear cells,patients with severe disease showed 0.024 CFC/10(5) in BM and 0.0068 CFC/10(5) in PB. Under limiting dilution conditions,patients' cells also showed markedly lower colony-forming ability. In contrast to 4.3 +/- 1 colonies/normal LTC-IC,we obtained only 1.27 +/- 0.09 and 2.0 +/- 0.35 colonies from BM of acute and recovered cases,respectively. These values were used to extrapolate LTC-IC numbers from secondary colony formation in suspension cultures. In PB,calculated LTC-IC were decreased 7.4-fold in new and relapsed severe AA and 2.8-fold in recovered AA. In BM,LTC-IC were decreased 10-fold in new and relapsed AA and sixfold in recovered cases. Compared with measurements obtained on presentation,LTC-IC were lower in post-treatment samples from patients who had failed to recover after intensive immunosuppression and relatively higher in cases at relapse. In recovered patients,LTC-IC number increased but remained below the normal range in 20 of 25. In patients studied serially for 3 to 12 months after treatment,LTC-IC numbers remained stable but low. LTC-IC number correlated with concurrently determined CD34+ cell number and primary hematopoietic colony formation. These results indicate that stem cell numbers,as quantitated by the LTC-IC assay,are markedly diminished in number in all severe AA. Additionally,the function of the stem cell or the stem cell compartment in AA is also abnormal,as inferred from the low clonogenic potential in secondary colony assays. Early hematologic improvement in some patients occurs without increasing numbers of LTC-IC,and a minority of recovered cases show apparent repopulation of the LTC-IC compartment years after treatment.
View Publication