G. Golinelli et al. (Aug 2025)
Frontiers in Immunology 16 6
Multiplex engineering using microRNA-mediated gene silencing in CAR T cells
Multiplex gene-edited chimeric antigen receptor (CAR) T-cell therapies face significant challenges,including potential oncogenic risks associated with double-strand DNA breaks. Targeted microRNAs (miRNAs) may provide a safer,functional,and tunable alternative for gene silencing without the need for DNA editing. As a proof of concept for multiplex gene silencing,we employed an optimized miRNA backbone and gene architecture to silence T-cell receptor (TCR) and major histocompatibility complex class I (MHC-I) in mesothelin-directed CAR (M5CAR) T cells. The efficacy of this approach was compared to CD3ζ and β2-microglobulin (β2M) CRISPR/Cas9 knockout (KO) cells. miRNA-expressing cassettes were incorporated into M5CAR lentiviral vectors,enabling combined gene silencing and CAR expression. Antitumor activity was evaluated using in vitro assays and in vivo pancreatic ductal adenocarcinoma models. Silenced (S) M5CAR T cells retained antitumor functionality comparable to,and in some cases exceeding,that of KO cells. In vivo,S M5CAR T cells achieved tumor control with higher persistence and superior metastasis prevention. In vitro assays demonstrated enhanced resistance to alloreactive natural killer (NK) cells and peripheral blood mononuclear cells (PBMCs). Titratable multiplex gene silencing via targeted miRNAs offers an alternative to gene editing for CAR T cells,with potential advantages in potency,persistence,metastasis prevention,and immune evasion for allogeneic products. This strategy may overcome tumor-induced immunosuppression while avoiding the risks associated with DNA double-strand breaks.
View Publication
产品类型:
产品号#:
15021
15025
15061
15065
产品名:
RosetteSep™人T细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人T细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
Hsieh J et al. (NOV 2004)
Proceedings of the National Academy of Sciences of the United States of America 101 47 16659--64
It has become apparent that chromatin modification plays a critical role in the regulation of cell-type-specific gene expression. Here,we show that an inhibitor of histone deacetylase,valproic acid (VPA),induced neuronal differentiation of adult hippocampal neural progenitors. In addition,VPA inhibited astrocyte and oligodendrocyte differentiation,even in conditions that favored lineage-specific differentiation. Among the VPA-up-regulated,neuron-specific genes,a neurogenic basic helix-loop-helix transcription factor,NeuroD,was identified. Overexpression of NeuroD resulted in the induction and suppression of neuronal and glial differentiation,respectively. These results suggest that VPA promotes neuronal fate and inhibits glial fate simultaneously through the induction of neurogenic transcription factors including NeuroD.
View Publication
产品类型:
产品号#:
72112
72114
72292
产品名:
Forskolin
Forskolin
Valproic Acid (Sodium Salt)
Beliveau A et al. (MAY 2016)
Scientific reports 6 26143
Aligned Nanotopography Promotes a Migratory State in Glioblastoma Multiforme Tumor Cells.
Glioblastoma multiforme (GBM) is an aggressive,Grade IV astrocytoma with a poor survival rate,primarily due to the GBM tumor cells migrating away from the primary tumor site along the nanotopography of white matter tracts and blood vessels. It is unclear whether this nanotopography influences the biomechanical properties (i.e. cytoskeletal stiffness) of GBM tumor cells. Although GBM tumor cells have an innate propensity to migrate,we believe this capability is enhanced due to the influence of nanotopography on the tumor cells' biomechanical properties. In this study,we used an aligned nanofiber film that mimics the nanotopography in the tumor microenvironment to investigate the mechanical properties of GBM tumor cells in vitro. The data demonstrate that the cytoskeletal stiffness,cell traction stress,and focal adhesion area were significantly lower in the GBM tumor cells compared to healthy astrocytes. Moreover,the cytoskeletal stiffness was significantly reduced when cultured on aligned nanofiber films compared to smooth and randomly aligned nanofiber films. Gene expression analysis showed that tumor cells cultured on the aligned nanotopography upregulated key migratory genes and downregulated key proliferative genes. Therefore,our data suggest that the migratory potential is elevated when GBM tumor cells are migrating along aligned nanotopographical substrates.
View Publication
BackgroundHuman pluripotent stem cells (hPSCs),including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs),can undergo erythroid differentiation,offering a potentially invaluable resource for generating large quantities of erythroid cells. However,the majority of erythrocytes derived from hPSCs fail to enucleate compared with those derived from cord blood progenitors,with an unknown molecular basis for this difference. The expression of vimentin (VIM) is retained in erythroid cells differentiated from hPSCs but is absent in mature erythrocytes. Further exploration is required to ascertain whether VIM plays a critical role in enucleation and to elucidate the underlying mechanisms.MethodsIn this study,we established a hESC line with reversible vimentin degradation (dTAG-VIM-H9) using the proteolysis-targeting chimera (PROTAC) platform. Various time-course studies,including erythropoiesis from CD34+ human umbilical cord blood and three-dimensional (3D) organoid culture from hESCs,morphological analysis,quantitative real-time PCR (qRT-PCR),western blotting,flow cytometry,karyotyping,cytospin,Benzidine-Giemsa staining,immunofluorescence assay,and high-speed cell imaging analysis,were conducted to examine and compare the characteristics of hESCs and those with vimentin degradation,as well as their differentiated erythroid cells.ResultsVimentin expression diminished during normal erythropoiesis in CD34+ cord blood cells,whereas it persisted in erythroid cells differentiated from hESC. Depletion of vimentin using the degradation tag (dTAG) system promotes erythroid enucleation in dTAG-VIM-H9 cells. Nuclear polarization of erythroblasts is elevated by elimination of vimentin.ConclusionsVIM disappear during the normal maturation of erythroid cells,whereas they are retained in erythroid cells differentiated from hPSCs. We found that retention of vimentin during erythropoiesis impairs erythroid enucleation from hPSCs. Using the PROTAC platform,we validated that vimentin degradation by dTAG accelerates the enucleation rate in dTAG-VIM-H9 cells by enhancing nuclear polarization.Graphical Abstract
Supplementary InformationThe online version contains supplementary material available at 10.1186/s13287-024-03910-1.
View Publication
产品类型:
产品号#:
09600
09605
09650
09655
100-0483
100-0484
产品名:
StemSpan™ SFEM
StemSpan™ SFEM II
StemSpan™ SFEM
StemSpan™ SFEM II
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
(Apr 2024)
Frontiers in Cell and Developmental Biology 12 5
Forskolin induces FXR expression and enhances maturation of iPSC-derived hepatocyte-like cells
The generation of iPSC-derived hepatocyte-like cells (HLCs) is a powerful tool for studying liver diseases,their therapy as well as drug development. iPSC-derived disease models benefit from their diverse origin of patients,enabling the study of disease-associated mutations and,when considering more than one iPSC line to reflect a more diverse genetic background compared to immortalized cell lines. Unfortunately,the use of iPSC-derived HLCs is limited due to their lack of maturity and a rather fetal phenotype. Commercial kits and complicated 3D-protocols are cost- and time-intensive and hardly useable for smaller working groups. In this study,we optimized our previously published protocol by fine-tuning the initial cell number,exchanging antibiotics and basal medium composition and introducing the small molecule forskolin during the HLC maturation step. We thereby contribute to the liver research field by providing a simple,cost- and time-effective 2D differentiation protocol. We generate functional HLCs with significantly increased HLC hallmark gene (ALB,HNF4?,and CYP3A4) and protein (ALB) expression,as well as significantly elevated inducible CYP3A4 activity. Graphical Abstract
View Publication
Chai R et al. (MAY 2012)
Proceedings of the National Academy of Sciences of the United States of America 109 21 8167--72
Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea.
Inner ear hair cells are specialized sensory cells essential for auditory function. Previous studies have shown that the sensory epithelium is postmitotic,but it harbors cells that can behave as progenitor cells in vitro,including the ability to form new hair cells. Lgr5,a Wnt target gene,marks distinct supporting cell types in the neonatal cochlea. Here,we tested the hypothesis that Lgr5(+) cells are Wnt-responsive sensory precursor cells. In contrast to their quiescent in vivo behavior,Lgr5(+) cells isolated by flow cytometry from neonatal Lgr5(EGFP-CreERT2/+) mice proliferated and formed clonal colonies. After 10 d in culture,new sensory cells formed and displayed specific hair cell markers (myo7a,calretinin,parvalbumin,myo6) and stereocilia-like structures expressing F-actin and espin. In comparison with other supporting cells,Lgr5(+) cells were enriched precursors to myo7a(+) cells,most of which formed without mitotic division. Treatment with Wnt agonists increased proliferation and colony-formation capacity. Conversely,small-molecule inhibitors of Wnt signaling suppressed proliferation without compromising the myo7a(+) cells formed by direct differentiation. In vivo lineage tracing supported the idea that Lgr5(+) cells give rise to myo7a(+) hair cells in the neonatal Lgr5(EGFP-CreERT2/+) cochlea. In addition,overexpression of β-catenin initiated proliferation and led to transient expansion of Lgr5(+) cells within the cochlear sensory epithelium. These results suggest that Lgr5 marks sensory precursors and that Wnt signaling can promote their proliferation and provide mechanistic insights into Wnt-responsive progenitor cells during sensory organ development.
View Publication
Zhang M et al. (SEP 2014)
International journal of cancer 135 5 1132--41
Anti-β₂M monoclonal antibodies kill myeloma cells via cell- and complement-mediated cytotoxicity.
Our previous studies showed that anti-β2M monoclonal antibodies (mAbs) at high doses have direct apoptotic effects on myeloma cells,suggesting that anti-β2M mAbs might be developed as a novel therapeutic agent. In this study,we investigated the ability of the mAbs at much lower concentrations to indirectly kill myeloma cells by utilizing immune effector cells or molecules. Our results showed that anti-β2M mAbs effectively lysed MM cells via antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC),which were correlated with and dependent on the surface expression of β2M on MM cells. The presence of MM bone marrow stromal cells or addition of IL-6 did not attenuate anti-β2M mAb-induced ADCC and CDC activities against MM cells. Furthermore,anti-β2M mAbs only showed limited cytotoxicity toward normal B cells and nontumorous mesenchymal stem cells,indicating that the ADCC and CDC activities of the anti-β2M mAbs were more prone to the tumor cells. Lenalidomide potentiated in vitro ADCC activity against MM cells and in vivo tumor inhibition capacity induced by the anti-β2M mAbs by enhancing the activity of NK cells. These results support clinical development of anti-β2M mAbs,both as a monotherapy and in combination with lenalidomide,to improve MM patient outcome.
View Publication
产品类型:
产品号#:
18387
18387RF
产品名:
N. Li et al. (Oct 2025)
Journal of Cellular and Molecular Medicine 29 19
BNIP3L/BNIP3‐Mediated Mitophagy Contributes to the Maintenance of Ovarian Cancer Stem Cells
Ovarian cancer remains the most lethal gynaecological malignancy,with tumour recurrence and chemoresistance posing significant therapeutic challenges. Emerging evidence suggests that cancer stem cells (CSCs),a rare subpopulation within tumours with self‐renewal and differentiation capacities,contribute to these hurdles. Therefore,elucidating the mechanisms that sustain CSCs is critical for improving treatment strategies. Mitophagy,a selective process for eliminating damaged mitochondria,plays a key role in maintaining cellular homeostasis,including CSC survival. Our study demonstrates that ovarian CSCs exhibit enhanced mitophagy,accompanied by elevated expression of the mitochondrial outer membrane receptors BNIP3 and BNIP3L. Knockdown of BNIP3 or BNIP3L significantly reduces mitophagy and impairs CSC self‐renewal,indicating that receptor‐mediated mitophagy is essential for CSC maintenance. Mechanistically,we identify that hyperactivated NF‐κB signalling drives the upregulation of BNIP3 and BNIP3L in ovarian CSCs. Inhibition of NF‐κB signalling,either via p65 knockdown or pharmacological inhibitors,effectively suppresses mitophagy. Furthermore,we demonstrate that elevated DNA‐PK expression contributes to the constitutive activation of NF‐κB signalling,thereby promoting mitophagy in ovarian CSCs. In summary,our findings establish that BNIP3/BNIP3L‐mediated mitophagy,driven by DNA‐PK‐dependent NF‐κB hyperactivation,is essential for CSC maintenance. Targeting the DNA‐PK/NF‐κB/BNIP3L‐BNIP3 axis to disrupt mitochondrial quality control in CSCs represents a promising therapeutic strategy to prevent ovarian cancer recurrence and metastasis.
View Publication