L. Li et al. (nov 2019)
Proceedings of the National Academy of Sciences of the United States of America 116 46 23274--23283
Directing differentiation of human induced pluripotent stem cells toward androgen-producing Leydig cells rather than adrenal cells.
Reduced serum testosterone (T),or hypogonadism,affects millions of men and is associated with many pathologies,including infertility,cardiovascular diseases,metabolic syndrome,and decreased libido and sexual function. Administering T-replacement therapy (TRT) reverses many of the symptoms associated with low T levels. However,TRT is linked to side effects such as infertility and increased risk of prostate cancer and cardiovascular diseases. Thus,there is a need to obtain T-producing cells that could be used to treat hypogonadism via transplantation and reestablishment of T-producing cell lineages in the body. T is synthesized by Leydig cells (LCs),proposed to derive from mesenchymal cells of mesonephric origin. Although mesenchymal cells have been successfully induced into LCs,the limited source and possible trauma to donors hinders their application to clinical therapies. Alternatively,human induced pluripotent stem cells (hiPSCs),which are expandable in culture and have the potential to differentiate into all somatic cell types,have become the emerging source of autologous cell therapies. We have successfully induced the differentiation of hiPSCs into either human Leydig-like (hLLCs) or adrenal-like cells (hALCs) using chemically defined culture conditions. Factors critical for the development of LCs were added to both culture systems. hLLCs expressed all steroidogenic genes and proteins important for T biosynthesis,synthesized T rather than cortisol,secreted steroid hormones in response to dibutyryl-cAMP and 22(R)-hydroxycholesterol,and displayed ultrastructural features resembling LCs. By contrast,hALCs synthesized cortisol rather than T. The success in generating hiPSC-derived hLLCs with broad human LC (hLC) features supports the potential for hiPSC-based hLC regeneration.
View Publication
产品类型:
产品号#:
06005
产品名:
IntestiCult™ 肠道类器官生长培养基 (小鼠)
Jamieson CHM et al. (APR 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 16 6224--9
The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation.
Although a large proportion of patients with polycythemia vera (PV) harbor a valine-to-phenylalanine mutation at amino acid 617 (V617F) in the JAK2 signaling molecule,the stage of hematopoiesis at which the mutation arises is unknown. Here we isolated and characterized hematopoietic stem cells (HSC) and myeloid progenitors from 16 PV patient samples and 14 normal individuals,testing whether the JAK2 mutation could be found at the level of stem or progenitor cells and whether the JAK2 V617F-positive cells had altered differentiation potential. In all PV samples analyzed,there were increased numbers of cells with a HSC phenotype (CD34+CD38-CD90+Lin-) compared with normal samples. Hematopoietic progenitor assays demonstrated that the differentiation potential of PV was already skewed toward the erythroid lineage at the HSC level. The JAK2 V617F mutation was detectable within HSC and their progeny in PV. Moreover,the aberrant erythroid potential of PV HSC was potently inhibited with a JAK2 inhibitor,AG490.
View Publication
产品类型:
产品号#:
04435
04445
产品名:
MethoCult™H4435富集
MethoCult™H4435富集
Qian H et al. (OCT 2007)
Blood 110 7 2399--407
Distinct roles of integrins alpha6 and alpha4 in homing of fetal liver hematopoietic stem and progenitor cells.
Homing of hematopoietic stem cells (HSCs) into the bone marrow (BM) is a prerequisite for establishment of hematopoiesis during development and following transplantation. However,the molecular interactions that control homing of HSCs,in particular,of fetal HSCs,are not well understood. Herein,we studied the role of the alpha6 and alpha4 integrin receptors for homing and engraftment of fetal liver (FL) HSCs and hematopoietic progenitor cells (HPCs) to adult BM by using integrin alpha6 gene-deleted mice and function-blocking antibodies. Both integrins were ubiquitously expressed in FL Lin(-)Sca-1(+)Kit(+) (LSK) cells. Deletion of integrin alpha6 receptor or inhibition by a function-blocking antibody inhibited FL LSK cell adhesion to its extracellular ligands,laminins-411 and -511 in vitro,and significantly reduced homing of HPCs to BM. In contrast,the anti-integrin alpha6 antibody did not inhibit BM homing of HSCs. In agreement with this,integrin alpha6 gene-deleted FL HSCs did not display any homing or engraftment defect compared with wild-type littermates. In contrast,inhibition of integrin alpha4 receptor by a function-blocking antibody virtually abrogated homing of both FL HSCs and HPCs to BM,indicating distinct functions for integrin alpha6 and alpha4 receptors during homing of fetal HSCs and HPCs.
View Publication
产品类型:
产品号#:
03134
产品名:
MethoCult™M3134
Singbrant S et al. (JUN 2010)
Blood 115 23 4689--98
Canonical BMP signaling is dispensable for hematopoietic stem cell function in both adult and fetal liver hematopoiesis, but essential to preserve colon architecture.
Numerous publications have described the importance of bone morphogenetic protein (BMP) signaling in the specification of hematopoietic tissue in developing embryos. Here we investigate the full role of canonical BMP signaling in both adult and fetal liver hematopoiesis using conditional knockout strategies because conventional disruption of components of the BMP signaling pathway result in early death of the embryo. By targeting both Smad1 and Smad5,we have generated a double-knockout mouse with complete disruption of canonical BMP signaling. Interestingly,concurrent deletion of Smad1 and Smad5 results in death because of extrahematopoietic pathologic changes in the colon. However,Smad1/Smad5-deficient bone marrow cells can compete normally with wild-type cells and display unaffected self-renewal and differentiation capacity when transplanted into lethally irradiated recipients. Moreover,although BMP receptor expression is increased in fetal liver,fetal liver cells deficient in both Smad1 and Smad5 remain competent to long-term reconstitute lethally irradiated recipients in a multilineage manner. In conclusion,canonical BMP signaling is not required to maintain either adult or fetal liver hematopoiesis,despite its crucial role in the initial patterning of hematopoiesis in early embryonic development.
View Publication
产品类型:
产品号#:
03231
09600
09650
产品名:
MethoCult™M3231
StemSpan™ SFEM
StemSpan™ SFEM
Laliberté et al. (JAN 1992)
Cancer chemotherapy and pharmacology 30 1 7--11
Potent inhibitors for the deamination of cytosine arabinoside and 5-aza-2'-deoxycytidine by human cytidine deaminase.
Deamination of the nucleoside analogues ARA-C and 5-AZA-CdR by CR deaminase results in a loss of antileukemic activity. To prevent the inactivation of these analogues,inhibitors of CR deaminase may prove to be useful agents. In the present study we investigated the effects of the deaminase inhibitors Zebularine,5-F-Zebularine,and diazepinone riboside on the deamination of CR,ARA-C,and 5-AZA-CdR using highly purified human CR deaminase (EC 3.5.4.5). These inhibitors produced a competitive type of inhibition with each substrate,the potency of which followed the patterns diazepinone riboside greater than 5-F-Zebularine and THU greater than Zebularine. 5-AZA-CdR was more sensitive than ARA-C to the inhibition produced by these deaminase inhibitors. The inhibition constants for diazepinone riboside lay in the range of 5-15 nM,suggesting that this inhibitor could be an excellent candidate for use in combination chemotherapy with either ARA-C or 5-AZA-CdR in patients with leukemia.
View Publication
产品类型:
产品号#:
72902
产品名:
Zebularine
Tasnim F et al. (MAY 2016)
Molecular Pharmaceutics 13 6 1947--1957
Functionally Enhanced Human Stem Cell Derived Hepatocytes in Galactosylated Cellulosic Sponges for Hepatotoxicity Testing.
Pluripotent stem cell derived hepatocyte-like cells (hPSC-HLCs) are an attractive alternative to primary human hepatocytes (PHHs) used in applications ranging from therapeutics to drug safety testing studies. It would be critical to improve and maintain mature hepatocyte functions of the hPSC-HLCs,especially for long-term studies. If 3D culture systems were to be used for such purposes,it would be important that the system can support formation and maintenance of optimal-sized spheroids for long periods of time,and can also be directly deployed in liver drug testing assays. We report the use of 3-dimensional (3D) cellulosic scaffold system for the culture of hPSC-HLCs. The scaffold has a macroporous network which helps to control the formation and maintenance of the spheroids for weeks. Our results show that culturing hPSC-HLCs in 3D cellulosic scaffolds increases functionality,as demonstrated by improved urea production and hepatic marker expression. In addition,hPSC-HLCs in the scaffolds exhibit a more mature phenotype,as shown by enhanced cytochrome P450 activity and induction. This enables the system to show a higher sensitivity to hepatotoxicants and a higher degree of similarity to PHHs when compared to conventional 2D systems. These results suggest that 3D cellulosic scaffolds are ideal for the long-term cultures needed to mature hPSC-HLCs. The mature hPSC-HLCs with improved cellular function can be continually maintained in the scaffolds and directly used for hepatotoxicity assays,making this system highly attractive for drug testing applications.
View Publication
A Micropatterned Human Pluripotent Stem Cell-Based Ventricular Cardiac Anisotropic Sheet for Visualizing Drug-Induced Arrhythmogenicity.
A novel cardiomimetic biohybrid material,termed as the human ventricular cardiac anisotropic sheet (hvCAS) is reported. Well-characterized human pluripotent stem-cell-derived ventricular cardiomyocytes are strategically aligned to reproduce key electrophysiological features of native human ventricle,which,along with specific selection criteria,allows for a direct visualization of arrhythmic spiral re-entry and represents a revolutionary tool to assess preclinical drug-induced arrhythmogenicity.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
(Feb 2024)
Nature Communications 15
Time-integrated BMP signaling determines fate in a stem cell model for early human development
How paracrine signals are interpreted to yield multiple cell fate decisions in a dynamic context during human development in vivo and in vitro remains poorly understood. Here we report an automated tracking method to follow signaling histories linked to cell fate in large numbers of human pluripotent stem cells (hPSCs). Using an unbiased statistical approach,we discover that measured BMP signaling history correlates strongly with fate in individual cells. We find that BMP response in hPSCs varies more strongly in the duration of signaling than the level. However,both the level and duration of signaling activity control cell fate choices only by changing the time integral. Therefore,signaling duration and level are interchangeable in this context. In a stem cell model for patterning of the human embryo,we show that signaling histories predict the fate pattern and that the integral model correctly predicts changes in cell fate domains when signaling is perturbed. Our data suggest that mechanistically,BMP signaling is integrated by SOX2. The interpretation of the key developmental signal BMP remains poorly understood. Here,the authors show that the total time-integrated signaling controls differentiation in a stem cell embryo model and provide a possible mechanism.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
(Oct 2024)
Pharmaceutics 16 10
A Human Brain-Chip for Modeling Brain Pathologies and Screening Blood–Brain Barrier Crossing Therapeutic Strategies
Background/Objectives: The limited translatability of preclinical experimental findings to patients remains an obstacle for successful treatment of brain diseases. Relevant models to elucidate mechanisms behind brain pathogenesis,including cell-specific contributions and cell-cell interactions,and support successful targeting and prediction of drug responses in humans are urgently needed,given the species differences in brain and blood-brain barrier (BBB) functions. Human microphysiological systems (MPS),such as Organ-Chips,are emerging as a promising approach to address these challenges. Here,we examined and advanced a Brain-Chip that recapitulates aspects of the human cortical parenchyma and the BBB in one model. Methods: We utilized human primary astrocytes and pericytes,human induced pluripotent stem cell (hiPSC)-derived cortical neurons,and hiPSC-derived brain microvascular endothelial-like cells and included for the first time on-chip hiPSC-derived microglia. Results: Using Tumor necrosis factor alpha (TNF?) to emulate neuroinflammation,we demonstrate that our model recapitulates in vivo-relevant responses. Importantly,we show microglia-derived responses,highlighting the Brain-Chip’s sensitivity to capture cell-specific contributions in human disease-associated pathology. We then tested BBB crossing of human transferrin receptor antibodies and conjugated adeno-associated viruses. We demonstrate successful in vitro/in vivo correlation in identifying crossing differences,underscoring the model’s capacity as a screening platform for BBB crossing therapeutic strategies and ability to predict in vivo responses. Conclusions: These findings highlight the potential of the Brain-Chip as a reliable and time-efficient model to support therapeutic development and provide mechanistic insights into brain diseases,adding to the growing evidence supporting the value of MPS in translational research and drug discovery.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
(Dec 2024)
Nature Communications 15
Reliability of high-quantity human brain organoids for modeling microcephaly, glioma invasion and drug screening
Brain organoids offer unprecedented insights into brain development and disease modeling and hold promise for drug screening. Significant hindrances,however,are morphological and cellular heterogeneity,inter-organoid size differences,cellular stress,and poor reproducibility. Here,we describe a method that reproducibly generates thousands of organoids across multiple hiPSC lines. These High Quantity brain organoids (Hi-Q brain organoids) exhibit reproducible cytoarchitecture,cell diversity,and functionality,are free from ectopically active cellular stress pathways,and allow cryopreservation and re-culturing. Patient-derived Hi-Q brain organoids recapitulate distinct forms of developmental defects: primary microcephaly due to a mutation in CDK5RAP2 and progeria-associated defects of Cockayne syndrome. Hi-Q brain organoids displayed a reproducible invasion pattern for a given patient-derived glioma cell line. This enabled a medium-throughput drug screen to identify Selumetinib and Fulvestrant,as inhibitors of glioma invasion in vivo. Thus,the Hi-Q approach can easily be adapted to reliably harness brain organoids’ application for personalized neurogenetic disease modeling and drug discovery. Human brain organoids are plagued by heterogeneity and poor reproducibility,critical parameters for reliable disease modeling and drug testing. Here,the authors report on Hi-Q organoids which solve these limitations and can be cryopreserved in large quantities.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
Bielawska-Pohl A et al. (MAY 2005)
Journal of immunology (Baltimore,Md. : 1950) 174 9 5573--82
Human NK cells lyse organ-specific endothelial cells: analysis of adhesion and cytotoxic mechanisms.
Human organ-specific microvascular endothelial cells (ECs) were established and used in the present study to investigate their susceptibility to natural killer cell line (NKL)-induced lysis. Our data indicate that although IL-2-stimulated NKL (NKL2) cells adhered to the human peripheral (HPLNEC.B3),mesenteric lymph node (HMLNEC),brain (HBrMEC),and lung (HLMEC) and skin (HSkMEC.2) ECs,they significantly killed these cells quite differently. A more pronounced lysis of OSECs was also observed when IL-2-stimulated,purified peripheral blood NK cells were used as effector cells. In line with the correlation observed between adhesion pattern and the susceptibility to NKL2-mediated killing,we demonstrated using different chelators that the necessary adhesion step was governed by an Mg(2+)-dependent,but Ca(2+)-independent,mechanism as opposed to the subsequent Ca(2+)-dependent killing. To identify the cytotoxic pathway used by NKL2 cells,the involvement of the classical and alternate pathways was examined. Blocking of the Ca(2+)-dependent cytotoxicity pathway by EGTA/MgCl(2) significantly inhibited endothelial target cell killing,suggesting a predominant role for the perforin/granzyme pathway. Furthermore,using confocal microscopy,we demonstrated that the interaction between NKL2 effectors and ECs induced cytochrome c release and Bid translocation in target cells,indicating an involvement of the mitochondrial pathway in NKL2-induced EC death. In addition,although all tested cells were sensitive to the cytotoxic action of TNF,no susceptibility to TRAIL or anti-Fas mAb was observed. The present studies emphasize that human NK cell cytotoxicity toward ECs may be a potential target to block vascular injury.
View Publication
产品类型:
产品号#:
15025
15065
产品名:
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
Eggimann L et al. (MAY 2015)
Bone marrow transplantation 50 5 743--5
Kinetics of peripheral blood chimerism for surveillance of patients with leukemia and chronic myeloid malignancies after reduced-intensity conditioning allogeneic hematopoietic SCT.