Wang Y et al. (MAR 2017)
Nucleic acids research 45 5 e29
Integration-defective lentiviral vector mediates efficient gene editing through homology-directed repair in human embryonic stem cells.
Human embryonic stem cells (hESCs) are used as platforms for disease study,drug screening and cell-based therapy. To facilitate these applications,it is frequently necessary to genetically manipulate the hESC genome. Gene editing with engineered nucleases enables site-specific genetic modification of the human genome through homology-directed repair (HDR). However,the frequency of HDR remains low in hESCs. We combined efficient expression of engineered nucleases and integration-defective lentiviral vector (IDLV) transduction for donor template delivery to mediate HDR in hESC line WA09. This strategy led to highly efficient HDR with more than 80% of the selected WA09 clones harboring the transgene inserted at the targeted genomic locus. However,certain portions of the HDR clones contained the concatemeric IDLV genomic structure at the target site,probably resulted from recombination of the IDLV genomic input before HDR with the target. We found that the integrase protein of IDLV mediated the highly efficient HDR through the recruitment of a cellular protein,LEDGF/p75. This study demonstrates that IDLV-mediated HDR is a powerful and broadly applicable technology to carry out site-specific gene modification in hESCs.
View Publication
G. Kumari et al. (May 2025)
Communications Biology 8
CRISPR/Cas9-engineering of Kell null erythrocytes to unveil host targeted irresistible antimalarial
Malaria elimination faces challenges from drug resistance,stemming from mutations within the parasite’s genetic makeup. Genetic adaptations in key erythrocyte proteins offer malaria protection in endemic regions. Emulating nature’s approach,and implementing methodologies to render indispensable host proteins inactive,holds the potential to reshape antimalarial therapy. This study delves into the functional implication of the single-span membrane protein Kell ectodomain,which shares consensus sequence with the zinc endopeptidase family,possesses extracellular enzyme activity crucial for parasite invasion into host erythrocytes. Through generating Kell-null erythrocytes from an erythroid progenitor,BEL-A,we demonstrate the indispensable nature of Kell activity in P. falciparum invasion. Additionally,thiorphan,a metallo-endopeptidase inhibitor,which specifically inhibits Kell activity,inhibited Plasmodium infection at nanomolar concentrations. Interestingly,individuals in malaria-endemic regions exhibit low Kell expression and activity,indicating a plausible Plasmodium-induced evolutionary pressure. Both thiorphan and its prodrug racecadotril,demonstrated potent antimalarial activity in vivo,highlighting Kell’s protease role in invasion and proposing thiorphan as a promising host-oriented antimalarial therapeutic. Subject terms: Parasite biology,Parasite host response
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
Ramachandra CJA et al. (SEP 2011)
Nucleic Acids Research 39 16 e107
Efficient recombinase-mediated cassette exchange at the AAVS1 locus in human embryonic stem cells using baculoviral vectors
Insertion of a transgene into a defined genomic locus in human embryonic stem cells (hESCs) is crucial in preventing random integration-induced insertional mutagenesis,and can possibly enable persistent transgene expression during hESC expansion and in their differentiated progenies. Here,we employed homologous recombination in hESCs to introduce heterospecific loxP sites into the AAVS1 locus,a site with an open chromatin structure that allows averting transgene silencing phenomena. We then performed Cre recombinase mediated cassette exchange using baculoviral vectors to insert a transgene into the modified AAVS1 locus. Targeting efficiency in the master hESC line with the loxP-docking sites was up to 100%. Expression of the inserted transgene lasted for at least 20 passages during hESC expansion and was retained in differentiated cells derived from the genetically modified hESCs. Thus,this study demonstrates the feasibility of genetic manipulation at the AAVS1 locus with homologous recombination and using viral transduction in hESCs to facilitate recombinase-mediated cassette exchange. The method developed will be useful for repeated gene targeting at a defined locus of the hESC genome.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
(Feb 2024)
The Journal of Experimental Medicine 221 3
PROTAC-mediated NR4A1 degradation as a novel strategy for cancer immunotherapy
The study introduces a new immunotherapy for treating melanoma and other cancers by developing a PROTAC that degrades NR4A1,an intracellular nuclear factor that plays a crucial role in immune suppression. An effective cancer therapy requires killing cancer cells and targeting the tumor microenvironment (TME). Searching for molecules critical for multiple cell types in the TME,we identified NR4A1 as one such molecule that can maintain the immune suppressive TME. Here,we establish NR4A1 as a valid target for cancer immunotherapy and describe a first-of-its-kind proteolysis-targeting chimera (PROTAC,named NR-V04) against NR4A1. NR-V04 degrades NR4A1 within hours in vitro and exhibits long-lasting NR4A1 degradation in tumors with an excellent safety profile. NR-V04 inhibits and frequently eradicates established tumors. At the mechanistic level,NR-V04 induces the tumor-infiltrating (TI) B cells and effector memory CD8+ T (Tem) cells and reduces monocytic myeloid-derived suppressor cells (m-MDSC),all of which are known to be clinically relevant immune cell populations in human melanomas. Overall,NR-V04–mediated NR4A1 degradation holds promise for enhancing anticancer immune responses and offers a new avenue for treating various types of cancers such as melanoma. Graphical Abstract
View Publication
产品类型:
产品号#:
19854
17851
产品名:
EasySep™小鼠B细胞分选试剂盒
EasySep™人CD3正选试剂盒II
(May 2024)
Nature 630 8017
Selective haematological cancer eradication with preserved haematopoiesis
Haematopoietic stem cell (HSC) transplantation (HSCT) is the only curative treatment for a broad range of haematological malignancies,but the standard of care relies on untargeted chemotherapies and limited possibilities to treat malignant cells after HSCT without affecting the transplanted healthy cells1. Antigen-specific cell-depleting therapies hold the promise of much more targeted elimination of diseased cells,as witnessed in the past decade by the revolution of clinical practice for B cell malignancies2. However,target selection is complex and limited to antigens expressed on subsets of haematopoietic cells,resulting in a fragmented therapy landscape with high development costs2–5. Here we demonstrate that an antibody–drug conjugate (ADC) targeting the pan-haematopoietic marker CD45 enables the antigen-specific depletion of the entire haematopoietic system,including HSCs. Pairing this ADC with the transplantation of human HSCs engineered to be shielded from the CD45-targeting ADC enables the selective eradication of leukaemic cells with preserved haematopoiesis. The combination of CD45-targeting ADCs and engineered HSCs creates an almost universal strategy to replace a diseased haematopoietic system,irrespective of disease aetiology or originating cell type. We propose that this approach could have broad implications beyond haematological malignancies. An antibody–drug conjugate that targets the pan-haematopoietic marker CD45 combined with transplanted stem cells engineered to be shielded from it can eradicate leukaemic cells while preserving haematopoiesis.
View Publication
产品类型:
产品号#:
09600
09605
09650
09655
22001
22005
22006
22007
22008
22009
22011
22012
产品名:
StemSpan™ SFEM
StemSpan™ SFEM II
StemSpan™ SFEM
StemSpan™ SFEM II
STEMvision™ 人脐带血7-天CFU分析包
STEMvision™ 彩色人脐带血14-天CFU分析包
STEMvision™ 彩色人骨髓14-天CFU分析包
STEMvision™ 彩色人动员外周血14-天CFU分析包
STEMvision™ 小鼠总CFU分析包
STEMvision™ 小鼠髓系CFU分析包
STEMvision™ 小鼠红系CFU分析包
STEMvision™ 小鼠CFU分析包(髓系和红系)
Abadier M et al. (DEC 2017)
Cell reports 21 13 3885--3899
Effector and Regulatory T Cells Roll at High Shear Stress by Inducible Tether and Sling Formation.
The adaptive immune response involves T cell differentiation and migration to sites of inflammation. T cell trafficking is initiated by rolling on inflamed endothelium. Tethers and slings,discovered in neutrophils,facilitate cell rolling at high shear stress. Here,we demonstrate that the ability to form tethers and slings during rolling is highly inducible in T helper 1 (Th1),Th17,and regulatory T (Treg) cells but less in Th2 cells. In vivo,endogenous Treg cells rolled stably in cremaster venules at physiological shear stress. Quantitative dynamic footprinting nanoscopy of Th1,Th17,and Treg cells uncovered the formation of multiple tethers per cell. Human Th1 cells also showed tethers and slings. RNA sequencing (RNA-seq) revealed the induction of cell migration and cytoskeletal genes in sling-forming cells. We conclude that differentiated CD4 T cells stabilize rolling by inducible tether and sling formation. These phenotypic changes approximate the adhesion phenotype of neutrophils and support CD4 T cell access to sites of inflammation.
View Publication
产品类型:
产品号#:
19762
19762RF
产品名:
EasySep™小鼠中性粒细胞富集试剂盒
RoboSep™ 小鼠中性粒细胞富集试剂盒含滤芯吸头
(Apr 2024)
International Journal of Stem Cells 17 2
Energy Metabolism in Human Pluripotent Stem and Differentiated Cells Compared Using a Seahorse XF96 Extracellular Flux Analyzer
Evaluating cell metabolism is crucial during pluripotent stem cell (PSC) differentiation and somatic cell reprogramming as it affects cell fate. As cultured stem cells are heterogeneous,a comparative analysis of relative metabolism using existing metabolic analysis methods is difficult,resulting in inaccuracies. In this study,we measured human PSC basal metabolic levels using a Seahorse analyzer. We used fibroblasts,human induced PSCs,and human embryonic stem cells to monitor changes in basal metabolic levels according to cell number and determine the number of cells suitable for analysis. We evaluated normalization methods using glucose and selected the most suitable for the metabolic analysis of heterogeneous PSCs during the reprogramming stage. The response of fibroblasts to glucose increased with starvation time,with oxygen consumption rate and extracellular acidification rate responding most effectively to glucose 4 hours after starvation and declining after 5 hours of starvation. Fibroblasts and PSCs achieved appropriate responses to glucose without damaging their metabolism 2?4 and 2?3 hours after starvation,respectively. We developed a novel method for comparing basal metabolic rates of fibroblasts and PSCs,focusing on quantitative analysis of glycolysis and oxidative phosphorylation using glucose without enzyme inhibitors. This protocol enables efficient comparison of energy metabolism among cell types,including undifferentiated PSCs,differentiated cells,and cells undergoing cellular reprogramming,and addresses critical issues,such as differences in basal metabolic levels and sensitivity to normalization,providing valuable insights into cellular energetics.
View Publication
Reduced Monocyte and Neutrophil Infiltration and Activation by P-Selectin/CD62P Inhibition Enhances Thrombus Resolution in Mice
BACKGROUND:Venous thromboembolism is a major health problem. After thrombus formation,its resolution is essential to re-establish blood flow,which is crucially mediated by infiltrating neutrophils and monocytes in concert with activated platelets and endothelial cells. Thus,we aimed to modulate leukocyte function during thrombus resolution post-thrombus formation by blocking P-selectin/CD62P-mediated cell interactions.METHODS:Thrombosis was induced by inferior vena cava stenosis through ligation in mice. After 1 day,a P-selectin-blocking antibody or isotype control was administered and thrombus composition and resolution were analyzed.RESULTS:Localizing neutrophils and macrophages in thrombotic lesions of wild-type mice revealed that these cells enter the thrombus and vessel wall from the caudal end. Neutrophils were predominantly present 1 day and monocytes/macrophages 3 days after vessel ligation. Blocking P-selectin reduced circulating platelet-neutrophil and platelet-Ly6Chigh monocyte aggregates near the thrombus,and diminished neutrophils and Ly6Chigh macrophages in the cranial thrombus part compared with isotype-treated controls. Depletion of neutrophils 1 day after thrombus initiation did not phenocopy P-selectin inhibition but led to larger thrombi compared with untreated controls. In vitro,P-selectin enhanced human leukocyte function as P-selectin-coated beads increased reactive oxygen species production by neutrophils and tissue factor expression of classical monocytes. Accordingly,P-selectin inhibition reduced oxidative burst in the thrombus and tissue factor expression in the adjacent vessel wall. Moreover,blocking P-selectin reduced thrombus density determined by scanning electron microscopy and increased urokinase-type plasminogen activator levels in the thrombus,which accelerated caudal fibrin degradation from day 3 to day 14. This accelerated thrombus resolution as thrombus volume declined more rapidly after blocking P-selectin.CONCLUSIONS:Inhibition of P-selectin-dependent activation of monocytes and neutrophils accelerates venous thrombosis resolution due to reduced infiltration and activation of innate immune cells at the site of thrombus formation,which prevents early thrombus stabilization and facilitates fibrinolysis.
View Publication
Pelicano H et al. (DEC 2006)
The Journal of cell biology 175 6 913--23
Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism.
Cancer cells exhibit increased glycolysis for ATP production due,in part,to respiration injury (the Warburg effect). Because ATP generation through glycolysis is less efficient than through mitochondrial respiration,how cancer cells with this metabolic disadvantage can survive the competition with other cells and eventually develop drug resistance is a long-standing paradox. We report that mitochondrial respiration defects lead to activation of the Akt survival pathway through a novel mechanism mediated by NADH. Respiration-deficient cells (rho(-)) harboring mitochondrial DNA deletion exhibit dependency on glycolysis,increased NADH,and activation of Akt,leading to drug resistance and survival advantage in hypoxia. Similarly,chemical inhibition of mitochondrial respiration and hypoxia also activates Akt. The increase in NADH caused by respiratory deficiency inactivates PTEN through a redox modification mechanism,leading to Akt activation. These findings provide a novel mechanistic insight into the Warburg effect and explain how metabolic alteration in cancer cells may gain a survival advantage and withstand therapeutic agents.
View Publication
产品类型:
产品号#:
04230
产品名:
MethoCult™H4230
Phanstiel D et al. (MAR 2008)
Proceedings of the National Academy of Sciences of the United States of America 105 11 4093--8
Mass spectrometry identifies and quantifies 74 unique histone H4 isoforms in differentiating human embryonic stem cells.
Epigenetic regulation through chromatin is thought to play a critical role in the establishment and maintenance of pluripotency. Traditionally,antibody-based technologies were used to probe for specific posttranslational modifications (PTMs) present on histone tails,but these methods do not generally reveal the presence of multiple modifications on a single-histone tail (combinatorial codes). Here,we describe technology for the discovery and quantification of histone combinatorial codes that is based on chromatography and mass spectrometry. We applied this methodology to decipher 74 discrete combinatorial codes on the tail of histone H4 from human embryonic stem (ES) cells. Finally,we quantified the abundances of these codes as human ES cells undergo differentiation to reveal striking changes in methylation and acetylation patterns. For example,H4R3 methylation was observed only in the presence of H4K20 dimethylation; such context-specific patterning exemplifies the power of this technique.
View Publication