Hansen AS et al. (OCT 2016)
Scientific reports 6 35406
Non-random pairing of CD46 isoforms with skewing towards BC2 and C2 in activated and memory/effector T cells.
CD46 is a glycoprotein with important functions in innate and adaptive immune responses. Functionally different isoforms are generated by alternative splicing at exons 7-9 (BC and C isoforms) and exon 13 (CYT-1 and CYT-2 isoforms) giving rise to BC1,BC2,C1 and C2. We developed a novel real-time PCR assay that allows quantitative comparisons between these isoforms. Their relative frequency in CD4(+) T cells from 100 donors revealed a distribution with high interpersonally variability. Importantly,the distribution between the isoforms was not random and although splicing favoured inclusion of exon 8 (BC isoforms),exclusion of exon 8 (C isoforms) was significantly linked to exclusion of exon 13 (CYT-2 isoforms). Despite inter-individual differences,CD4(+) and CD8(+) T cells,B cells,NK cells and monocytes expressed similar isoform profiles intra-individually. However,memory/effector CD4(+) T cells had a significantly higher frequency of CYT-2 when compared with naïve CD4(+) T cells. Likewise,in vitro activation of naïve and total CD4(+) T cells increased the expression of CYT-2. This indicates that although splicing factors determine a certain expression profile in an individual,the profile can be modulated by external stimuli. This suggests a mechanism by which alterations in CD46 isoforms may temporarily regulate the immune response.
View Publication
产品类型:
产品号#:
17952
17952RF
19155
19155RF
产品名:
EasySep™人CD4+ T细胞分选试剂盒
RoboSep™ 人CD4+ T细胞分选试剂盒
Podar K et al. (FEB 2003)
The Journal of biological chemistry 278 8 5794--801
Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells.
Caveolae,specialized flask-shaped lipid rafts on the cell surface,are composed of cholesterol,sphingolipids,and structural proteins termed caveolins; functionally,these plasma membrane microdomains have been implicated in signal transduction and transmembrane transport. In the present study,we examined the role of caveolin-1 in multiple myeloma cells. We show for the first time that caveolin-1,which is usually absent in blood cells,is expressed in multiple myeloma cells. Analysis of myeloma cell-derived plasma membrane fractions shows that caveolin-1 is co-localized with interleukin-6 receptor signal transducing chain gp130 and with insulin-like growth factor-I receptor. Cholesterol depletion by beta-cyclodextrin results in the loss of caveola structure in myeloma cells,as shown by transmission electron microscopy,and loss of caveolin-1 function. Interleukin-6 and insulin-like growth factor-I,growth and survival factors in multiple myeloma,induce caveolin-1 phosphorylation,which is abrogated by pre-treatment with beta-cyclodextrin. Importantly,inhibition of caveolin-1 phosphorylation blocks both interleukin-6-induced protein complex formation with caveolin-1 and downstream activation of the phosphatidylinositol 3-kinase/Akt-1 pathway. beta-Cyclodextrin also blocks insulin-like growth factor-I-induced tyrosine phosphorylation of insulin-responsive substrate-1 and downstream activation of the phosphatidylinositol 3-kinase/Akt-1 pathway. Therefore,cholesterol depletion by beta-cyclodextrin abrogates both interleukin-6- and insulin-like growth factor-I-triggered multiple myeloma cell survival via negative regulation of caveolin-1. Taken together,this study identifies caveolin-1 and other structural membrane components as potential new therapeutic targets in multiple myeloma.
View Publication
产品类型:
产品号#:
15129
15169
产品名:
RosetteSep™人多发性骨髓瘤细胞富集抗体混合物
RosetteSep™人多发性骨髓瘤细胞富集抗体混合物
Tan JY et al. (JUL 2013)
Stem cells and development 22 13 1893--1906
Efficient derivation of lateral plate and paraxial mesoderm subtypes from human embryonic stem cells through GSKi-mediated differentiation.
The vertebrae mesoderm is a source of cells that forms a variety of tissues,including the heart,vasculature,and blood. Consequently,the derivation of various mesoderm-specific cell types from human embryonic stem cells (hESCs) has attracted the interest of many investigators owing to their therapeutic potential in clinical applications. However,the need for efficient and reliable methods of differentiation into mesoderm lineage cell types remains a significant challenge. Here,we demonstrated that inhibition of glycogen synthase kinase-3 (GSK-3) is an essential first step toward efficient generation of the mesoderm. Under chemically defined conditions without additional growth factors/cytokines,short-term GSK inhibitor (GSKi) treatment effectively drives differentiation of hESCs into the primitive streak (PS),which can potentially commit toward the mesoderm when further supplemented with bone morphogenetic protein 4. Further analysis confirmed that the PS-like cells derived from GSKi treatment are bipotential,being able to specify toward the endoderm as well. Our findings suggest that the bipotential,PS/mesendoderm-like cell population exists only at the initial stages of GSK-3 inhibition,whereas long-term inhibition results in an endodermal fate. Lastly,we demonstrated that our differentiation approach could efficiently generate lateral plate (CD34(+)KDR(+)) and paraxial (CD34(-)PDGFRα(+)) mesoderm subsets that can be further differentiated along the endothelial and smooth muscle lineages,respectively. In conclusion,our study presents a unique approach for generating early mesoderm progenitors in a chemically directed fashion through the use of small-molecule GSK-3 inhibitor,which may be useful for future applications in regenerative medicine.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
05270
05275
产品名:
mTeSR™1
mTeSR™1
STEMdiff™ APEL™2 培养基
STEMdiff™ APEL™2 培养基
Matsumoto Y et al. (DEC 2013)
Orphanet journal of rare diseases 8 1 190
Induced pluripotent stem cells from patients with human fibrodysplasia ossificans progressiva show increased mineralization and cartilage formation.
BACKGROUND: Abnormal activation of endochondral bone formation in soft tissues causes significant medical diseases associated with disability and pain. Hyperactive mutations in the bone morphogenetic protein (BMP) type 1 receptor ACVR1 lead to fibrodysplasia ossificans progressiva (FOP),a rare genetic disorder characterized by progressive ossification in soft tissues. However,the specific cellular mechanisms are unclear. In addition,the difficulty obtaining tissue samples from FOP patients and the limitations in mouse models of FOP hamper our ability to dissect the pathogenesis of FOP.backslashnbackslashnMETHODS: To address these challenges and develop a disease model in a dish"�
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07920
85850
85857
85870
85875
产品名:
ACCUTASE™
mTeSR™1
mTeSR™1
Chen G et al. (DEC 2014)
Cell and tissue banking 15 4 513--21
Monitoring the biology stability of human umbilical cord-derived mesenchymal stem cells during long-term culture in serum-free medium.
Mesenchymal stem cells (MSCs) are multipotent adult stem cells that have an immunosuppressive effect. The biological stability of MSCs in serum-free medium during long-term culture in vitro has not been elucidated clearly. The morphology,immunophenotype and multi-lineage potential were analyzed at passages 3,5,10,15,20,and 25 (P3,P5,P10,P15,P20,and P25,respectively). The cell cycle distribution,apoptosis,and karyotype of human umbilical cord-derived (hUC)-MSCs were analyzed at P3,P5,P10,P15,P20,and P25. From P3 to P25,the three defining biological properties of hUC-MSCs [adherence to plastic,specific surface antigen expression,multipotent differentiation potential] met the standards proposed by the International Society for Cellular Therapy for definition of MSCs. The cell cycle distribution analysis at the P25 showed that the percentage of cells at G0/G1 was increased,compared with the cells at P3 (P textless 0.05). Cells at P25 displayed an increase in the apoptosis rate (to 183 %),compared to those at P3 (P textless 0.01). Within subculture generations 3-20 (P3-P20),the differences between the cell apoptotic rates were not statistically significant (P textgreater 0.05). There were no detectable chromosome eliminations,displacements,or chromosomal imbalances,as assessed by the karyotyping guidelines of the International System for Human Cytogenetic Nomenclature (ISCN,2009). Long-term culture affects the biological stability of MSCs in serum-free MesenCult-XF medium. MSCs can be expanded up to the 25th passage without chromosomal changes by G-band. The best biological activity period and stability appeared between the third to 20th generations.
View Publication
产品类型:
产品号#:
05420
05429
05424
产品名:
Yen J et al. (SEP 2014)
Journal of materials chemistry. B,Materials for biology and medicine 2 46 8098--8105
Enhanced Non-Viral Gene Delivery to Human Embryonic Stem Cells via Small Molecule-Mediated Transient Alteration of Cell Structure.
Non-viral gene delivery into human embryonic stem cells (hESCs)is an important tool for controlling cell fate. However,the delivery efficiency remains low due in part to the tight colony structure of the cells which prevents effective exposure towards delivery vectors. We herein report a novel approach to enhance non-viral gene delivery to hESCs by transiently altering the cell and colony structure. (R)-(+)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide (Y-27632),a small molecule that inhibits the rho-associated protein kinase pathway,is utilized to induce transient colony spreading which leads to increased transfection efficiency by 1.5 to 2 folds in a spectrum of non-viral transfection reagents including Lipofectamine 2000 and Fugene HD. After removal of Y-27632 post-transfection,cells can revert back to its normal state and do not show alteration of pluripotency. This approach provides a simple,effective tool to enhance non-viral gene delivery into adherent hESCs for genetic manipulation.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
(Jul 2025)
Communications Biology 8
Cathepsin B deficiency disrupts cortical development via PEG3, leading to depression-like behavior
Cathepsin B (CatB),a protease in endosomal and lysosomal compartments,plays a key role in neuronal protein processing and degradation,but its function in brain development remains unclear. In this study,we found that CatB is highly expressed in the cortex of E12.5–E16.5 mice. Morphological analysis revealed significant defects in cortical development in CatB knockout (KO) mice,particularly in layer 6. In vitro experiments showed that CatB deficiency notably impaired neuronal migration and development. Behaviorally,CatB KO mice displayed prominent depressive-like behaviors,and electrophysiological recordings demonstrated significantly reduced neuronal activity in layer 6 of the medial prefrontal cortex. Mechanistically,proteomics analysis revealed that CatB KO affected neuronal migration and axonal growth,and decreased the expression of key transcription factors involved in neuronal development,particularly PEG3. Deficiency of PEG3 also significantly impaired neuronal migration and development. Our findings uncover a role for CatB in cortical development and suggest a mechanism linking CatB deficiency with depression and developmental defects through the destabilization of PEG3. Cathepsin B (CatB) is essential for cortical development. Its deficiency impairs neuronal migration,reduces PEG3 expression,and leads to layer 6 defects and depression-like behaviors,revealing a novel link between CatB and brain development.
View Publication
DC-SIGN, C1q and gC1qR forge a trimolecular receptor complex on the surface of human monocyte-derived immature dendritic cells
C1q modulates the differentiation and function of cells committed to the monocyte-derived dendritic cell (DC) lineage. Because the two C1q receptors found on the DC surface - gC1qR and cC1qR - lack a direct conduit into intracellular elements,we postulated that the receptors must form complexes with transmembrane partners. Here we show that DC-SIGN,a C-type lectin expressed on DCs,binds directly to C1q,as assessed by ELISA,flow cytometry and immuno-precipitation experiments. Surface plasmon resonance analysis revealed that the interaction was specific,and intact C1q,as well as the globular portion of C1q,bound to DC-SIGN. While IgG significantly reduced the binding; the Arg residues (162-163) of the C1q-A-chain,considered to contribute to C1q-IgG interaction,were not required for C1q binding to DC-SIGN. Binding was significantly reduced in the absence of Ca(2+) and by pre-incubation of DC-SIGN with mannan,suggesting that C1q binds to DC-SIGN at its principal Ca(2+)-binding pocket,which has increased affinity for mannose residues. Antigen-capture ELISA and immunofluorescence microscopy revealed that C1q and gC1qR associate with DC-SIGN on blood DC precursors and immature DCs. Thus the data suggest that C1q/gC1qR may regulate DC differentiation and function through DC-SIGN-mediated induction of cell signaling pathways.
View Publication
产品类型:
产品号#:
07801
07811
07851
07861
产品名:
Lymphoprep™
Lymphoprep™
Sahara M et al. (JUL 2014)
Cell Research 24 7 820--841
Manipulation of a VEGF-Notch signaling circuit drives formation of functional vascular endothelial progenitors from human pluripotent stem cells
Human pluripotent stem cell (hPSC)-derived endothelial lineage cells constitutes a promising source for therapeutic revascularization,but progress in this arena has been hampered by a lack of clinically-scalable differentiation protocols and inefficient formation of a functional vessel network integrating with the host circulation upon transplantation. Using a human embryonic stem cell reporter cell line,where green fluorescent protein expression is driven by an endothelial cell-specific VE-cadherin (VEC) promoter,we screened for textgreater 60 bioactive small molecules that would promote endothelial differentiation,and found that administration of BMP4 and a GSK-3β inhibitor in an early phase and treatment with VEGF-A and inhibition of the Notch signaling pathway in a later phase led to efficient differentiation of hPSCs to the endothelial lineage within six days. This sequential approach generated textgreater 50% conversion of hPSCs to endothelial cells (ECs),specifically VEC(+)CD31(+)CD34(+)CD14(-)KDR(high) endothelial progenitors (EPs) that exhibited higher angiogenic and clonogenic proliferation potential among endothelial lineage cells. Pharmaceutical inhibition or genetical knockdown of Notch signaling,in combination with VEGF-A treatment,resulted in efficient formation of EPs via KDR(+) mesodermal precursors and blockade of the conversion of EPs to mature ECs. The generated EPs successfully formed functional capillary vessels in vivo with anastomosis to the host vessels when transplanted into immunocompromised mice. Manipulation of this VEGF-A-Notch signaling circuit in our protocol leads to rapid large-scale production of the hPSC-derived EPs by 12- to 20-fold vs current methods,which may serve as an attractive cell population for regenerative vascularization with superior vessel forming capability compared to mature ECs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Ninomiya H et al. (JAN 2015)
In vitro cellular & developmental biology. Animal 51 1 1--8
Improved efficiency of definitive endoderm induction from human induced pluripotent stem cells in feeder and serum-free culture system
Improvement of methods to produce endoderm-derived cells from pluripotent stem cells is important to realize high-efficient induction of endodermal tissues such as pancreas and hepatocyte. Difficulties hampering such efforts include the low efficiency of definitive endoderm cell induction and establishing appropriate defined culture conditions to ensure a safe cell source for human transplantation. Based on previous studies,we revised the experimental condition of definitive endoderm induction in feeder- and serum-free culture. Our results suggested that CHIR99021 is more effective than Wnt3A ligand in feeder- and serum-free conditions. In addition,keeping cell density low during endoderm induction is important for the efficiency. On the other hand,we showed that overtreatment with CHIR99021 converted the cells into BRACHYURY-expressing posterior mesoderm cells rather than endoderm,indicating strict CHIR99021 treatment requirements for endoderm differentiation. Nevertheless,these results should enable better control in the production of definitive endoderm-derived cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Dahl C et al. (APR 2002)
Journal of immunological methods 262 1-2 137--43
The establishment of a combined serum-free and serum-supplemented culture method of obtaining functional cord blood-derived human mast cells.
BACKGROUND: Serum-free cultures supplemented with stem cell factor (SCF) and IL-6 is reported to support the extensive growth of less functional human cord blood-derived mast cells. OBJECTIVE: To obtain more functional mast cells from cord blood,we developed a culture system combining a serum-free condition for 0-8 weeks of culture,and followed by a serum-supplemented culture condition and examined the function of the cells compared to the cells cultured continuously in serum-free condition. METHODS: Human cord blood progenitors were purified with anti-CD133 antibody. They were cultured in a serum-free medium StemSpan supplemented with SCF at 100 ng/ml and IL-6 at 50 ng/ml for 8 weeks. Then,an aliquot of the cultured cells were cultured in the above condition but further supplemented with 10% fetal calf serum (FCS). RESULTS: The addition of FCS after 8 weeks of culture significantly increased the amount of histamine per mast cell (3.8 pg/cell) when compared to the serum-free condition (0.7 pg/cell). The cells cultured with FCS after 8 weeks expressed more FcvarepsilonRI alpha and released textgreater30% of the histamine content upon anti-IgE stimulation than those cultured without serum. CONCLUSION: It is uncertain why FCS enhanced the functional maturation of mast cells when added after week 8 of culture but suppressed mast cell development when added at day 0 of culture. Yet,the present method combining a serum-free culture system with a serum-supplemented culture system seems to be beneficial for most of the laboratories to obtain functional human mast cells.
View Publication