R. G. Walton et al. (dec 2019)
Aging cell 18 6 e13039
Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: A randomized, double-blind, placebo-controlled, multicenter trial: The MASTERS trial.
Progressive resistance exercise training (PRT) is the most effective known intervention for combating aging skeletal muscle atrophy. However,the hypertrophic response to PRT is variable,and this may be due to muscle inflammation susceptibility. Metformin reduces inflammation,so we hypothesized that metformin would augment the muscle response to PRT in healthy women and men aged 65 and older. In a randomized,double-blind trial,participants received 1,700 mg/day metformin (N = 46) or placebo (N = 48) throughout the study,and all subjects performed 14 weeks of supervised PRT. Although responses to PRT varied,placebo gained more lean body mass (p = .003) and thigh muscle mass (p {\textless} .001) than metformin. CT scan showed that increases in thigh muscle area (p = .005) and density (p = .020) were greater in placebo versus metformin. There was a trend for blunted strength gains in metformin that did not reach statistical significance. Analyses of vastus lateralis muscle biopsies showed that metformin did not affect fiber hypertrophy,or increases in satellite cell or macrophage abundance with PRT. However,placebo had decreased type I fiber percentage while metformin did not (p = .007). Metformin led to an increase in AMPK signaling,and a trend for blunted increases in mTORC1 signaling in response to PRT. These results underscore the benefits of PRT in older adults,but metformin negatively impacts the hypertrophic response to resistance training in healthy older individuals. ClinicalTrials.gov Identifier: NCT02308228.
View Publication
产品类型:
产品号#:
28600
产品名:
L-Calc™有限稀释软件
N. J. Giridhar et al. (Sep 2025)
Biology Open 14 9
Temporal transcriptomic profiling of human three-dimensional neuromuscular co-cultures
The principal organization of mammalian neuromuscular junctions (NMJs) shares essential features across species. However,human NMJs (hNMJs) exhibit distinct structural and physiological properties. While recent advances in stem-cell-based systems have significantly improved in vitro modeling of hNMJs,the extent to which these models recapitulate in vivo development remains unclear. Here,we performed temporal transcriptomic analysis of human three-dimensional (3D) neuromuscular co-cultures,composed of iPSC-derived motoneurons and skeletal muscle engineered from primary myoblasts. We found that the expression pattern follows a temporally coordinated gene expression program underlying NMJ maturation. The model recapitulates transcriptional features of NMJ development,including early myoblast fusion and presynaptic development,followed by a late-stage upregulation of postsynaptic markers and embryonic AChR subunits. Importantly,comparable transcriptional dynamics across two independent hiPSC lines confirm the reproducibility and robustness of this system. This study confirms on a transcriptional level that human 3D neuromuscular co-cultures are a robust and physiologically relevant model for investigating hNMJ development and function.
View Publication
产品类型:
产品号#:
100-0483
100-0484
产品名:
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
Park I-K et al. (MAR 2009)
Blood 113 11 2470--7
The Axl/Gas6 pathway is required for optimal cytokine signaling during human natural killer cell development.
Interleukin-15 (IL-15) is essential for natural killer (NK) cell differentiation. In this study,we assessed whether the receptor tyrosine kinase Axl and its ligand,Gas6,are involved in IL-15-mediated human NK differentiation from CD34(+) hematopoietic progenitor cells (HPCs). Blocking the Axl-Gas6 interaction with a soluble Axl fusion protein (Axl-Fc) or the vitamin K inhibitor warfarin significantly diminished the absolute number and percentage of CD3(-)CD56(+) NK cells derived from human CD34(+) HPCs cultured in the presence of IL-15,probably resulting in part from reduced phosphorylation of STAT5. In addition,CD3(-)CD56(+) NK cells derived from culture of CD34(+) HPCs with IL-15 and Axl-Fc had a significantly diminished capacity to express interferon-gamma or its master regulator,T-BET. Culture of CD34(+) HPCs in the presence of c-Kit ligand and Axl-Fc resulted in a significant decrease in the frequency of NK precursor cells responding to IL-15,probably the result of reduced c-Kit phosphorylation. Collectively,our data suggest that the Axl/Gas6 pathway contributes to normal human NK-cell development,at least in part via its regulatory effects on both the IL-15 and c-Kit signaling pathways in CD34(+) HPCs,and to functional NK-cell maturation via an effect on the master regulatory transcription factor T-BET.
View Publication
产品类型:
产品号#:
15026
15066
产品名:
RosetteSep™ 人造血祖细胞富集抗体混合物
RosetteSep™人造血祖细胞富集抗体混合物
Sakaki-Yumoto M et al. (JUN 2013)
Journal of Biological Chemistry 288 25 18546--18560
Smad2 Is essential for maintenance of the human and mouse primed pluripotent stem cell state
Human embryonic stem cells and mouse epiblast stem cells represent a primed pluripotent stem cell state that requires TGF-β/activin signaling. TGF-β and/or activin are commonly thought to regulate transcription through both Smad2 and Smad3. However,the different contributions of these two Smads to primed pluripotency and the downstream events that they may regulate remain poorly understood. We addressed the individual roles of Smad2 and Smad3 in the maintenance of primed pluripotency. We found that Smad2,but not Smad3,is required to maintain the undifferentiated pluripotent state. We defined a Smad2 regulatory circuit in human embryonic stem cells and mouse epiblast stem cells,in which Smad2 acts through binding to regulatory promoter sequences to activate Nanog expression while in parallel repressing autocrine bone morphogenetic protein signaling. Increased autocrine bone morphogenetic protein signaling caused by Smad2 down-regulation leads to cell differentiation toward the trophectoderm,mesoderm,and germ cell lineages. Additionally,induction of Cdx2 expression,as a result of decreased Smad2 expression,leads to repression of Oct4 expression,which,together with the decreased Nanog expression,accelerates the loss of pluripotency. These findings reveal that Smad2 is a unique integrator of transcription and signaling events and is essential for the maintenance of the mouse and human primed pluripotent stem cell state.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
H. Yang et al. (Jul 2025)
Clinical Epigenetics 17 1
Martinostat as a novel HDAC inhibitor to overcome tyrosine kinase inhibitor resistance in chronic myeloid leukemia
Chronic myeloid leukemia (CML) remains a therapeutic challenge,particularly in patients who develop resistance to standard tyrosine kinase inhibitors (TKIs) such as imatinib. Here,we present the first demonstration of the potent anti-leukemic activity of the histone deacetylase (HDAC) inhibitor martinostat in both TKI-sensitive and TKI-resistant CML. Structural and biochemical analyses confirmed the efficient and selective binding of martinostat to HDAC isoenzyme ligand-binding pockets,resulting in histone and tubulin hyperacetylation in both imatinib-sensitive and resistant CML cells,outperforming vorinostat,a clinically used HDAC inhibitor (HDACi). It selectively impaired CML cell proliferation and viability and induced apoptosis across various CML models,including resistant cell models and patient blasts,with minimal toxicity to healthy cells and low developmental toxicity in zebrafish. In addition to its single-agent efficacy,martinostat demonstrated enhanced anticancer effects when combined with imatinib,both in vitro and in vivo,significantly reducing tumor growth in resistant CML xenograft models. Mechanistically,mRNA-seq data showed that martinostat disrupted key survival signaling pathways and amplified apoptotic responses,contributing to its anticancer activity. These findings highlight the potential of martinostat as a selective,low-toxicity HDACi that,combined with TKIs,could provide an effective strategy to overcome drug resistance in CML and improve therapeutic outcomes. The online version contains supplementary material available at 10.1186/s13148-025-01921-0.
View Publication
Eden JA (JUL 2010)
Menopause (New York,N.Y.) 17 4 801--10
Human breast cancer stem cells and sex hormones--a narrative review.
OBJECTIVE: The aim of this narrative review was to evaluate the role of cancer stem cells (CSCs) and sex steroids in the pathophysiology of human breast cancer. METHODS: A key-word search was performed using the Scopus database. Preference was given to studies using human cells and tissues. RESULTS: Long-term estrogen-progestin hormone therapy is known to increase breast cancer risk,although the mechanisms are poorly understood. In the last few years,it has become clear that many human breast cancers contain CSCs,which may be responsible for much of the tumor's malignant behavior. Very recently,the impact of estrogen,progesterone,and progestins on breast CSCs and their progeny has been studied and clarified. Most breast CSCs are estrogen receptor negative and progesterone receptor negative,although some intermediary progenitor forms have hormone receptors,especially progesterone receptor. Most mature human breast cancer cellsare estrogen receptor positive and can thus be stimulated by estrogen. Breast CSCs usually elaborate CD44+,CD24j/low and/or ALDEFLUOR+ cell markers and are lineage markers negative. One of the main roles of progesterone and progestin seems to be on certain breast cancer stem intermediate forms,inducing them to revert back to a more primitive breast CSC form. CONCLUSIONS: As the pathophysiology of human breast CSC is clarified,it is probable that this will lead to novel,effective breast cancer treatments and,perhaps,new breast cancer preventive agents. This research may also lead to safer hormone therapy regimens.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
Todaro M et al. (NOV 2010)
Cancer research 70 21 8874--85
Tumorigenic and metastatic activity of human thyroid cancer stem cells.
Thyroid carcinoma is the most common endocrine malignancy and the first cause of death among endocrine cancers. We show that the tumorigenic capacity in thyroid cancer is confined in a small subpopulation of stem-like cells with high aldehyde dehydrogenase (ALDH(high)) activity and unlimited replication potential. ALDH(high) cells can be expanded indefinitely in vitro as tumor spheres,which retain the tumorigenic potential upon delivery in immunocompromised mice. Orthotopic injection of minute numbers of thyroid cancer stem cells recapitulates the behavior of the parental tumor,including the aggressive metastatic features of undifferentiated thyroid carcinomas,which are sustained by constitutive activation of cMet and Akt in thyroid cancer stem cells. The identification of tumorigenic and metastagenic thyroid cancer cells may provide unprecedented preclinical tools for development and preclinical validation of novel targeted therapies.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
Ruiz S et al. (JAN 2010)
PLoS ONE 5 12 e15526
High-efficient generation of induced pluripotent stem cells from human astrocytes.
The reprogramming of human somatic cells to induced pluripotent stem (hiPS) cells enables the possibility of generating patient-specific autologous cells for regenerative medicine. A number of human somatic cell types have been reported to generate hiPS cells,including fibroblasts,keratinocytes and peripheral blood cells,with variable reprogramming efficiencies and kinetics. Here,we show that human astrocytes can also be reprogrammed into hiPS (ASThiPS) cells,with similar efficiencies to keratinocytes,which are currently reported to have one of the highest somatic reprogramming efficiencies. ASThiPS lines were indistinguishable from human embryonic stem (ES) cells based on the expression of pluripotent markers and the ability to differentiate into the three embryonic germ layers in vitro by embryoid body generation and in vivo by teratoma formation after injection into immunodeficient mice. Our data demonstrates that a human differentiated neural cell type can be reprogrammed to pluripotency and is consistent with the universality of the somatic reprogramming procedure.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Yu J et al. (DEC 2008)
Yearbook of Dermatology and Dermatologic Surgery 2008 5858 301--302
Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells
Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4,SOX2,NANOG,and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes,express telomerase activity,express cell surface markers and genes that characterize human ES cells,and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development,as well as for applications in transplantation medicine,once technical limitations (for example,mutation through viral integration) are eliminated.
View Publication
产品类型:
产品号#:
03120
05850
05857
05870
05875
05920
09500
27100
27150
85850
85857
85870
85875
产品名:
BIT 9500血清替代物
35 mm培养皿
35 mm培养皿
mTeSR™1
mTeSR™1
Zweigerdt R et al. (MAY 2011)
Nature protocols 6 5 689--700
Scalable expansion of human pluripotent stem cells in suspension culture.
Routine commercial and clinical applications of human pluripotent stem cells (hPSCs) and their progenies will require increasing cell quantities that cannot be provided by conventional adherent culture technologies. Here we describe a straightforward culture protocol for the expansion of undifferentiated human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) in suspension culture. This culture technique was successfully tested on two hiPSC clones,three hESC lines and on a nonhuman primate ESC line. It is based on a defined medium and single-cell inoculation,but it does not require culture preadaptation,use of microcarriers or any other matrices. Over a time course of 4-7 d,hPSCs can be expanded up to sixfold. Preparation of a high-density culture and its subsequent translation to scalable stirred suspension in Erlenmeyer flasks and stirred spinner flasks are also feasible. Importantly,hPSCs maintain pluripotency and karyotype stability for more than ten passages.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Orecchia A et al. (JAN 2011)
PloS one 6 9 e24307
Sirtinol treatment reduces inflammation in human dermal microvascular endothelial cells.
Histone deacetylases (HDAC) are key enzymes in the epigenetic control of gene expression. Recently,inhibitors of class I and class II HDAC have been successfully employed for the treatment of different inflammatory diseases such as rheumatoid arthritis,colitis,airway inflammation and asthma. So far,little is known so far about a similar therapeutic effect of inhibitors specifically directed against sirtuins,the class III HDAC. In this study,we investigated the expression and localization of endogenous sirtuins in primary human dermal microvascular endothelial cells (HDMEC),a cell type playing a key role in the development and maintenance of skin inflammation. We then examined the biological activity of sirtinol,a specific sirtuin inhibitor,in HDMEC response to pro-inflammatory cytokines. We found that,even though sirtinol treatment alone affected only long-term cell proliferation,it diminishes HDMEC inflammatory responses to tumor necrosis factor (TNF)α and interleukin (IL)-1β. In fact,sirtinol significantly reduced membrane expression of adhesion molecules in TNFã- or IL-1β-stimulated cells,as well as the amount of CXCL10 and CCL2 released by HDMEC following TNFα treatment. Notably,sirtinol drastically decreased monocyte adhesion on activated HDMEC. Using selective inhibitors for Sirt1 and Sirt2,we showed a predominant involvement of Sirt1 inhibition in the modulation of adhesion molecule expression and monocyte adhesion on activated HDMEC. Finally,we demonstrated the in vivo expression of Sirt1 in the dermal vessels of normal and psoriatic skin. Altogether,these findings indicated that sirtuins may represent a promising therapeutic target for the treatment of inflammatory skin diseases characterized by a prominent microvessel involvement.
View Publication