Barbaric I et al. (JUL 2014)
Stem Cell Reports 3 1 142--155
Time-lapse analysis of human embryonic stem cells reveals multiple bottlenecks restricting colony formation and their relief upon culture adaptation
Using time-lapse imaging,we have identified a series of bottlenecks that restrict growth of early-passage human embryonic stem cells (hESCs) and that are relieved by karyotypically abnormal variants that are selected by prolonged culture. Only a minority of karyotypically normal cells divided after plating,and these were mainly cells in the later stages of cell cycle at the time of plating. Furthermore,the daughter cells showed a continued pattern of cell death after division,so that few formed long-term proliferating colonies. These colony-forming cells showed distinct patterns of cell movement. Increasing cell density enhanced cell movement facilitating cell:cell contact,which resulted in increased proportion of dividing cells and improved survival postplating of normal hESCs. In contrast,most of the karyotypically abnormal cells reentered the cell cycle on plating and gave rise to healthy progeny,without the need for cell:cell contacts and independent of their motility patterns. ?? 2014 The Authors.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Al-Ali H et al. (MAY 2013)
ACS chemical biology 8 5 1027--36
Applications for ROCK kinase inhibition.
ROCK kinases,which play central roles in the organization of the actin cytoskeleton,are tantalizing targets for the treatment of human diseases. Deletion of ROCK I in mice revealed a role in the pathophysiological responses to high blood pressure,and validated ROCK inhibition for the treatment of specific types of cardiovascular disease. To date,the only ROCK inhibitor employed clinically in humans is fasudil,which has been used safely in Japan since 1995 for the treatment of cerebral vasospasm. Clinical trials,mostly focusing on the cardiovascular system,have uncovered beneficial effects of fasudil for additional indications. Intriguing recent findings also suggest significant potential for ROCK inhibitors in the production and implantation of stem cells for disease therapies.
View Publication
Bhattacharyya S et al. (AUG 2004)
Blood 104 4 1100--9
Immunoregulation of dendritic cells by IL-10 is mediated through suppression of the PI3K/Akt pathway and of IkappaB kinase activity.
Interleukin-10 (IL-10) has potent immunoregulatory effects on the maturation and the antigen-presenting cell (APC) function of dendritic cells (DCs). The molecular basis underlying these effects in DCs,however,is ill defined. It is well established that the transcription factor NF-kappaB is a key regulator of DC development,maturation,and APC function. This study was initiated to determine the effects of IL-10 on the NF-kappaB signaling pathway in immature DCs. IL-10 pretreatment of myeloid DCs cultured from bone marrow resulted in reduced DNA binding and nuclear translocation of NF-kappaB after anti-CD40 antibody or lipopolysaccharide (LPS) stimulation. Furthermore,inhibited NF-kappaB activation was characterized by reduced degradation,phosphorylation,or both of IkappaBalpha and IkappaBepsilon but not IkappaBbeta and by reduced phosphorylation of Ser536,located in the trans-activation domain of p65. Notably,IL-10-mediated inhibition of NF-kappaB coincided with suppressed IkappaB kinase (IKK) activity in vitro. Furthermore,IL-10 blocked inducible Akt phosphorylation,and inhibitors of phosphatidylinositol 3-kinase (PI3K) effectively suppressed the activation of Akt,IKK,and NF-kappaB. These findings demonstrate that IL-10 targets IKK activation in immature DCs and that suppressing the PI3K pathway in part mediates blockade of the pathway.
View Publication
产品类型:
产品号#:
18758
18758RF
18768
18768RF
产品名:
Fakler M et al. (FEB 2009)
Blood 113 8 1710--22
Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance.
Defects in apoptosis contribute to poor outcome in pediatric acute lymphoblastic leukemia (ALL),calling for novel strategies that counter apoptosis resistance. Here,we demonstrate for the first time that small molecule inhibitors of the antiapoptotic protein XIAP cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells. XIAP inhibitors at subtoxic concentrations,but not a structurally related control compound,synergize with TRAIL to trigger apoptosis and to inhibit clonogenic survival of acute leukemia cells,whereas they do not affect viability of normal peripheral blood lymphocytes,suggesting some tumor selectivity. Analysis of signaling pathways reveals that XIAP inhibitors enhance TRAIL-induced activation of caspases,loss of mitochondrial membrane potential,and cytochrome c release in a caspase-dependent manner,indicating that they promote a caspase-dependent feedback mitochondrial amplification loop. Of note,XIAP inhibitors even overcome Bcl-2-mediated resistance to TRAIL by enhancing Bcl-2 cleavage and Bak conformational change. Importantly,XIAP inhibitors kill leukemic blasts from children with ALL ex vivo and cooperate with TRAIL to induce apoptosis. In vivo,they significantly reduce leukemic burden in a mouse model of pediatric ALL engrafted in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. Thus,XIAP inhibitors present a promising novel approach for apoptosis-based therapy of childhood ALL.
View Publication
产品类型:
产品号#:
04100
产品名:
MethoCult™ H4100
N. J. Ronaghan et al. ( 2022)
PloS one 17 10 e0276013
M1-like, but not M0- or M2-like, macrophages, reduce RSV infection of primary bronchial epithelial cells in a media-dependent fashion.
Respiratory syncytial virus (RSV) is a common childhood infection that in young infants can progress into severe bronchiolitis and pneumonia. Disease pathogenesis results from both viral mediated and host immune processes of which alveolar macrophages play an important part. Here,we investigated the role of different types of alveolar macrophages on RSV infection using an in vitro co-culture model involving primary tissue-derived human bronchial epithelial cells (HBECs) and human blood monocyte-derived M0-like,M1-like,or M2-like macrophages. It was hypothesized that the in vitro model would recapitulate previous in vivo findings of a protective effect of macrophages against RSV infection. It was found that macrophages maintained their phenotype for the 72-hour co-culture time period and the bronchial epithelial cells were unaffected by the macrophage media. HBEC infection with RSV was decreased by M1-like macrophages but enhanced by M0- or M2-like macrophages. The medium used during the co-culture also impacted the outcome of the infection. This work demonstrates that alveolar macrophage phenotypes may have differential roles during epithelial RSV infection,and demonstrates that an in vitro co-culture model could be used to further investigate the roles of macrophages during bronchial viral infection.
View Publication
产品类型:
产品号#:
05040
100-1079
19359
产品名:
PneumaCult™-Ex Plus 培养基
EasySep™ 总核酸提取试剂盒
EasySep™人单核细胞分选试剂盒
Tay FC et al. (OCT 2013)
Journal of Gene Medicine 15 10 384--395
Targeted transgene insertion into the AAVS1 locus driven by baculoviral vector-mediated zinc finger nuclease expression in human-induced pluripotent stem cells
Background The AAVS1 locus is viewed as a ‘safe harbor' for transgene insertion into human genome. In the present study,we report a new method for AAVS1 targeting in human-induced pluripotent stem cells (hiPSCs). Methods We have developed two baculoviral transduction systems: one to deliver zinc finger nuclease (ZFN) and a DNA donor template for site-specific gene insertion and another to mediate Cre recombinase-mediated cassette exchange system to replace the inserted transgene with a new transgene. Results Our ZFN system provided the targeted integration efficiency of a Neo-EGFP cassette of 93.8% in G418-selected,stable hiPSC colonies. Southern blotting analysis of 20 AASV1 targeted colonies revealed no random integration events. Among 24 colonies examined for mono- or biallelic AASV1 targeting,25% of them were biallelically modified. The selected hiPSCs displayed persistent enhanced green fluorescent protein expression and continued the expression of stem cell pluripotency markers. The hiPSCs maintained the ability to differentiate into three germ lineages in derived embryoid bodies and transgene expression was retained in the differentiated cells. After pre-including the loxP-docking sites into the Neo-EGFP cassette,we demonstrated that a baculovirus-Cre/loxP system could be used to facilitate the replacement of the Neo-EGFP cassette with another transgene cassette at the AAVS1 locus. Conclusions Given high targeting efficiency,stability in expression of inserted transgene and flexibility in transgene exchange,the approach reported in the present study holds potential for generating genetically-modified human pluripotent stem cells suitable for developmental biology research,drug development,regenerative medicine and gene therapy. Copyright textcopyright 2013 John Wiley & Sons,Ltd.
View Publication