Microfabric Vessels for Embryoid Body Formation and Rapid Differentiation of Pluripotent Stem Cells.
Various scalable three-dimensional culture systems for regenerative medicine using human induced pluripotent stem cells (hiPSCs) have been developed to date. However,stable production of hiPSCs with homogeneous qualities still remains a challenge. Here,we describe a novel and simple embryoid body (EB) formation system using unique microfabricated culture vessels. Furthermore,this culture system is useful for high throughput EB formation and rapid generation of differentiated cells such as neural stem cells (NSCs) from hiPSCs. The period of NSC differentiation was significantly shortened under high EB density culture conditions. Simultaneous mass production of a pure population of NSCs was possible within 4 days. These results indicate that the novel culture system might not only become a unique tool to obtain new insights into developmental biology based on human stem cells,but also provide an important tractable platform for efficient and stable production of NSCs for clinical applications.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
J. E. Adair et al. ( 2016)
Nature communications 7 13173
Semi-automated closed system manufacturing of lentivirus gene-modified haematopoietic stem cells for gene therapy.
Haematopoietic stem cell (HSC) gene therapy has demonstrated potential to treat many diseases. However,current state of the art requires sophisticated ex vivo gene transfer in a dedicated Good Manufacturing Practices facility,limiting availability. An automated process would improve the availability and standardized manufacture of HSC gene therapy. Here,we develop a novel program for semi-automated cell isolation and culture equipment to permit complete benchtop generation of gene-modified CD34+ blood cell products for transplantation. These cell products meet current manufacturing quality standards for both mobilized leukapheresis and bone marrow,and reconstitute human haematopoiesis in immunocompromised mice. Importantly,nonhuman primate autologous gene-modified CD34+ cell products are capable of stable,polyclonal multilineage reconstitution with follow-up of more than 1 year. These data demonstrate proof of concept for point-of-care delivery of HSC gene therapy. Given the many target diseases for gene therapy,there is enormous potential for this approach to treat patients on a global scale.
View Publication
产品类型:
产品号#:
04230
09600
09650
产品名:
MethoCult™H4230
StemSpan™ SFEM
StemSpan™ SFEM
(Jan 2025)
Cell & Bioscience 15 e576
Human epicardial organoids from pluripotent stem cells resemble fetal stage with potential cardiomyocyte- transdifferentiation
Epicardium,the most outer mesothelium,exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF,cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells. Epicardium could also integrate and invade into mouse heart with SNAI1 expression,and give birth to numerous cardiomyocyte-like cells. Single-cell RNA seq unveils the heterogeneity and multipotency exhibited by epicardium-derived-cells and fetal-like epicardium. Meanwhile,extracellular matrix and growth factors secreted by epicardial organoid mimics the ecology of subepicardial space between the epicardium and cardiomyocytes. As such,this epicardial organoid offers a unique ground for investigating and exploring the potential of epicardium in heart development and regeneration.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13578-024-01339-w.
View Publication
Hu B-Y and Zhang S-C (JAN 2009)
Nature protocols 4 9 1295--304
Differentiation of spinal motor neurons from pluripotent human stem cells.
We have devised a reproducible protocol by which human embryonic stem cells (hESCs) or inducible pluripotent stem cells (iPSCs) are efficiently differentiated to functional spinal motor neurons. This protocol comprises four major steps. Pluripotent stem cells are induced to form neuroepithelial (NE) cells that form neural tube-like rosettes in the absence of morphogens in the first 2 weeks. The NE cells are then specified to OLIG2-expressing motoneuron progenitors in the presence of retinoic acid (RA) and sonic hedgehog (SHH) or purmorphamine in the next 2 weeks. These progenitor cells further generate post-mitotic,HB9-expressing motoneurons at the 5th week and mature to functional motor neurons thereafter. It typically takes 5 weeks to generate the post-mitotic motoneurons and 8-10 weeks for the production of functional mature motoneurons. In comparison with other methods,our protocol does not use feeder cells,has a minimum dependence on proteins (purmorphamine replacing SHH),has controllable adherent selection and is adaptable for scalable suspension culture.
View Publication
产品类型:
产品号#:
72202
72204
产品名:
Purmorphamine
Purmorphamine
Carpenter L et al. (APR 2011)
Blood 117 15 4008--4011
Human induced pluripotent stem cells are capable of B-cell lymphopoiesis.
Induced pluripotent stem (iPS) cells offer a unique potential for understanding the molecular basis of disease and development. Here we have generated several human iPS cell lines,and we describe their pluripotent phenotype and ability to differentiate into erythroid cells,monocytes,and endothelial cells. More significantly,however,when these iPS cells were differentiated under conditions that promote lympho-hematopoiesis from human embryonic stem cells,we observed the formation of pre-B cells. These cells were CD45(+)CD19(+)CD10(+) and were positive for transcripts Pax5,IL7αR,λ-like,and VpreB receptor. Although they were negative for surface IgM and CD5 expression,iPS-derived CD45(+)CD19(+) cells also exhibited multiple genomic D-J(H) rearrangements,which supports a pre-B-cell identity. We therefore have been able to demonstrate,for the first time,that human iPS cells are able to undergo hematopoiesis that contributes to the B-cell lymphoid lineage.
View Publication
Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells.
Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections,and comprise nearly 8% of the human genome. The most recently acquired human ERV is HERVK(HML-2),which repeatedly infected the primate lineage both before and after the divergence of the human and chimpanzee common ancestor. Unlike most other human ERVs,HERVK retained multiple copies of intact open reading frames encoding retroviral proteins. However,HERVK is transcriptionally silenced by the host,with the exception of in certain pathological contexts such as germ-cell tumours,melanoma or human immunodeficiency virus (HIV) infection. Here we demonstrate that DNA hypomethylation at long terminal repeat elements representing the most recent genomic integrations,together with transactivation by OCT4 (also known as POU5F1),synergistically facilitate HERVK expression. Consequently,HERVK is transcribed during normal human embryogenesis,beginning with embryonic genome activation at the eight-cell stage,continuing through the emergence of epiblast cells in preimplantation blastocysts,and ceasing during human embryonic stem cell derivation from blastocyst outgrowths. Remarkably,we detected HERVK viral-like particles and Gag proteins in human blastocysts,indicating that early human development proceeds in the presence of retroviral products. We further show that overexpression of one such product,the HERVK accessory protein Rec,in a pluripotent cell line is sufficient to increase IFITM1 levels on the cell surface and inhibit viral infection,suggesting at least one mechanism through which HERVK can induce viral restriction pathways in early embryonic cells. Moreover,Rec directly binds a subset of cellular RNAs and modulates their ribosome occupancy,indicating that complex interactions between retroviral proteins and host factors can fine-tune pathways of early human development.
View Publication