A. Haase et al. ( 2017)
Stem cell research 21 71--73
Generation of non-transgenic iPS cells from human cord blood CD34+ cells under animal component-free conditions.
Recently,many hurdles and limitations for production of clinically applicable iPSC derivatives have been overcome. Transgene-free iPSCs can be efficiently derived from easily accessible cell sources such as blood. Here we describe the generation of transgene-free hiPS cells from cord blood derived CD34+ cells,reprogrammed using CytoTune™ Sendai reprogramming vectors. CD34+ cell isolation,cultivation,reprogramming and establishment of resulting hiPSC lines were performed under the exclusive usage of animal-derived component-free (ADCF) materials and components.
View Publication
M. Mata Forsberg et al. (mar 2022)
Journal of leukocyte biology 111 3 597--609
Activation of human ?? T cells and NK cells by Staphylococcal enterotoxins requires both monocytes and conventional T cells.
Staphylococcal enterotoxins (SE) pose a great threat to human health due to their ability to bypass antigen presentation and activate large amounts of conventional T cells resulting in a cytokine storm potentially leading to toxic shock syndrome. Unconventional T- and NK cells are also activated by SE but the mechanisms remain poorly understood. In this study,the authors aimed to explore the underlying mechanism behind SE-mediated activation of MAIT-,?? T-,and NK cells in vitro. CBMC or PBMC were stimulated with the toxins SEA,SEH,and TSST-1,and cytokine and cytotoxic responses were analyzed with ELISA and flow cytometry. All toxins induced a broad range of cytokines,perforin and granzyme B,although SEH was not as potent as SEA and TSST-1. SE-induced IFN-$\gamma$ expression in MAIT-,?? T-,and NK cells was clearly reduced by neutralization of IL-12,while cytotoxic compounds were not affected at all. Kinetic assays showed that unconventional T cell and NK cell-responses are secondary to the response in conventional T cells. Furthermore,co-cultures of isolated cell populations revealed that the ability of SEA to activate ?? T- and NK cells was fully dependent on the presence of both monocytes and $\alpha$$\beta$ T cells. Lastly,it was found that SE provoked a reduced and delayed cytokine response in infants,particularly within the unconventional T and NK cell populations. This study provides novel insights regarding the activation of unconventional T- and NK cells by SE,which contribute to understanding the vulnerability of young children towards Staphylococcus aureus infections.
View Publication
Lu S-J et al. (SEP 2008)
Regenerative medicine 3 5 693--704
Robust generation of hemangioblastic progenitors from human embryonic stem cells.
BACKGROUND: Human embryonic stem cells (hESCs) are a potentially inexhaustible source of cells for replacement therapy. However,successful preclinical and clinical progress requires efficient and controlled differentiation towards the specific differentiated cell fate. METHODS: We previously developed a strategy to generate blast cells (BCs) from hESCs that were capable of differentiating into vascular structures as well as into all hematopoietic cell lineages. Although the BCs were shown to repair damaged vasculature in multiple animal models,the large-scale generation of cells under these conditions was challenging. Here we report a simpler and more efficient method for robust generation of hemangioblastic progenitors. RESULTS: In addition to eliminating several expensive factors that are unnecessary,we demonstrate that bone morphogenetic protein (BMP)-4 and VEGF are necessary and sufficient to induce hemangioblastic commitment and development from hESCs during early stages of differentiation. BMP-4 and VEGF significantly upregulate T-brachyury,KDR,CD31 and Lmo2 gene expression,while dramatically downregulating Oct-4 expression. The addition of basic FGF during growth and expansion was found to further enhance BC development,consistently generating approximately 1 x 10(8) BCs from one six well plate of hESCs. CONCLUSION: This new method represents a significantly improved system for generating hemangioblasts from hESCs,and although simplified,results in an eightfold increase in cell yield.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Boxall SA et al. (APR 2009)
Bone marrow transplantation 43 8 627--35
Haematopoietic repopulating activity in human cord blood CD133+ quiescent cells.
We have demonstrated previously that cord blood CD133(+) cells isolated in the G(0) phase of the cell cycle are highly enriched for haematopoietic stem cell (HSC) activity,in contrast to CD133(+)G(1) cells. Here,we have analysed the phenotype and functional properties of this population in more detail. Our data demonstrate that a large proportion of the CD133(+)G(0) cells are CD38 negative (60.4%) and have high aldehyde dehydrogenase activity (75.1%) when compared with their CD133(+)G(1) counterparts (13.5 and 4.1%,respectively). This suggests that stem cell activity resides in the CD133(+)G(0) population. In long-term BM cultures,the CD133(+)G(0) cells generate significantly more progenitors than the CD34(+)G(0) population (Ptextless0.001) throughout the culture period. Furthermore,a comparison of CD133(+)G(0) versus CD133(+)G(1) cells revealed that multilineage reconstitution was obtained only in non-obese diabetic/SCID animals receiving G(0) cells. We conclude that CD133(+) cells in the quiescent phase of the cell cycle have a phenotype consistent with HSCs and are highly enriched for repopulating activity when compared with their G(1) counterparts. This cell population should prove useful for selection and manipulation in ex vivo expansion protocols.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Jean E et al. (JAN 2011)
Journal of cellular and molecular medicine 15 1 119--33
Aldehyde dehydrogenase activity promotes survival of human muscle precursor cells.
Aldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Because ALDH activity has been used to identify normal and malignant cells with stem cell properties,we asked whether human myogenic precursor cells (myoblasts) could be identified and isolated based on their levels of ALDH activity. Human muscle explant-derived cells were incubated with ALDEFLUOR,a fluorescent substrate for ALDH,and we determined by flow cytometry the level of enzyme activity. We found that ALDH activity positively correlated with the myoblast-CD56(+) fraction in those cells,but,we also observed heterogeneity of ALDH activity levels within CD56-purified myoblasts. Using lentiviral mediated expression of shRNA we demonstrated that ALDH activity was associated with expression of Aldh1a1 protein. Surprisingly,ALDH activity and Aldh1a1 expression levels were very low in mouse,rat,rabbit and non-human primate myoblasts. Using different approaches,from pharmacological inhibition of ALDH activity by diethylaminobenzaldehyde,an inhibitor of class I ALDH,to cell fractionation by flow cytometry using the ALDEFLUOR assay,we characterized human myoblasts expressing low or high levels of ALDH. We correlated high ALDH activity ex vivo to resistance to hydrogen peroxide (H(2) O(2) )-induced cytotoxic effect and in vivo to improved cell viability when human myoblasts were transplanted into host muscle of immune deficient scid mice. Therefore detection of ALDH activity,as a purification strategy,could allow non-toxic and efficient isolation of a fraction of human myoblasts resistant to cytotoxic damage.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Singh H et al. (MAY 2010)
Stem Cell Research 4 3 165--179
Up-scaling single cell-inoculated suspension culture of human embryonic stem cells.
We have systematically developed single cell-inoculated suspension cultures of human embryonic stem cells (hESC) in defined media. Cell survival was dependent on hESC re-aggregation. In the presence of the Rho kinase inhibitor Y-27632 (Ri) only ∼ 44% of the seeded cells were rescued,but an optimized heat shock treatment combined with Ri significantly increased cell survival to ∼ 60%. Mechanistically,our data suggest that E-cadherin plays a role in hESC aggregation and that dissociation and re-aggregation upon passaging functions as a purification step towards a pluripotency markers-enriched population. Mass expansion of hESC was readily achieved by up-scaling 2 ml cultures to serial passaging in 50 ml spinner flasks. A media comparison revealed that mTeSR was superior to KnockOut-SR in supporting cell proliferation and pluripotency. Persistent expression of pluripotency markers was achieved for two lines (hES2,hES3) that were used at higher passages (textgreater 86). In contrast,rapid down regulation of Oct4,Tra-1-60,and SSEA4 was observed for ESI049,a clinically compliant line,used at passages 20-36. The up-scaling strategy has significant potential to provide pluripotent cells on a clinical scale. Nevertheless,our data also highlights a significant line-to-line variability and the need for a critical assessment of novel methods with numerous relevant cell lines. textcopyright 2010 Elsevier B.V. All rights reserved.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Song L et al. (AUG 2016)
Colloids and surfaces. B,Biointerfaces 148 49--58
Nanotopography promoted neuronal differentiation of human induced pluripotent stem cells.
Inefficient neural differentiation of human induced pluripotent stem cells (hiPSCs) motivates recent investigation of the influence of biophysical characteristics of cellular microenvironment,in particular nanotopography,on hiPSC fate decision. However,the roles of geometry and dimensions of nanotopography in neural lineage commitment of hiPSCs have not been well understood. The objective of this study is to delineate the effects of geometry,feature size and height of nanotopography on neuronal differentiation of hiPSCs. HiPSCs were seeded on equally spaced nanogratings (500 and 1000nm in linewidth) and hexagonally arranged nanopillars (500nm in diameter),each having a height of 150 or 560nm,and induced for neuronal differentiation in concert with dual Smad inhibitors. The gratings of 560nm height reduced cell proliferation,enhanced cytoplasmic localization of Yes-associated protein,and promoted neuronal differentiation (up to 60% βIII-tubulin(+) cells) compared with the flat control. Nanograting-induced cell polarity and cytoplasmic YAP localization were shown to be critical to the induced neural differentiation of hiPSCs. The derived neuronal cells express MAP2,Tau,glutamate,GABA and Islet-1,indicating the existence of multiple neuronal subtypes. This study contributes to the delineation of cell-nanotopography interactions and provides the insights into the design of nanotopography configuration for pluripotent stem cell neural lineage commitment.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Bauwens CL et al. (AUG 2011)
Tissue engineering. Part A 17 15-16 1901--9
Geometric control of cardiomyogenic induction in human pluripotent stem cells.
Although it has been observed that aggregate size affects cardiac development,an incomplete understanding of the cellular mechanisms underlying human pluripotent stem cell-derived cardiomyogenesis has limited the development of robust defined-condition cardiac cell generation protocols. Our objective was thus to elucidate cellular and molecular mechanisms underlying the endogenous control of human embryonic stem cell (hESC) cardiac tissue development,and to test the hypothesis that hESC aggregate size influences extraembryonic endoderm (ExE) commitment and cardiac inductive properties. hESC aggregates were generated with 100,1000,or 4000 cells per aggregate using microwells. The frequency of endoderm marker (FoxA2 and GATA6)-expressing cells decreased with increasing aggregate size during early differentiation. Cardiogenesis was maximized in aggregates initiated from 1000 cells,with frequencies of 0.49±0.06 cells exhibiting a cardiac progenitor phenotype (KDR(low)/C-KIT(neg)) on day 5 and 0.24±0.06 expressing cardiac Troponin T on day 16. A direct relationship between ExE and cardiac differentiation efficiency was established by forming aggregates with varying ratios of SOX7 (a transcription factor required for ExE development) overexpressing or knockdown hESCs to unmanipulated hESCs. We demonstrate,in a defined,serum-free cardiac induction system,that robust and efficient cardiac differentiation is a function of endogenous ExE cell concentration,a parameter that can be directly modulated by controlling hESC aggregate size.
View Publication
产品类型:
产品号#:
27845
27945
27840
27865
27940
27965
产品名:
Nottingham WT et al. (DEC 2007)
Blood 110 13 4188--97
Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer.
The transcription factor Runx1/AML1 is an important regulator of hematopoiesis and is critically required for the generation of the first definitive hematopoietic stem cells (HSCs) in the major vasculature of the mouse embryo. As a pivotal factor in HSC ontogeny,its transcriptional regulation is of high interest but is largely undefined. In this study,we used a combination of comparative genomics and chromatin analysis to identify a highly conserved 531-bp enhancer located at position + 23.5 in the first intron of the 224-kb mouse Runx1 gene. We show that this enhancer contributes to the early hematopoietic expression of Runx1. Transcription factor binding in vivo and analysis of the mutated enhancer in transient transgenic mouse embryos implicate Gata2 and Ets proteins as critical factors for its function. We also show that the SCL/Lmo2/Ldb-1 complex is recruited to the enhancer in vivo. Importantly,transplantation experiments demonstrate that the intronic Runx1 enhancer targets all definitive HSCs in the mouse embryo,suggesting that it functions as a crucial cis-regulatory element that integrates the Gata,Ets,and SCL transcriptional networks to initiate HSC generation.
View Publication