Richardson T et al. (DEC 2013)
Tissue Engineering: Part A 20 23-24 Epub ahead of print
Alginate encapsulation of human embryonic stem cells to enhance directed differentiation to pancreatic islet-like cells
The pluripotent property of hESCs makes them attractive for treatment of degenerative diseases such as diabetes. We have developed a stage-wise directed differentiation protocol to produce alginate-encapsulated islet-like cells derived from hESCs,which can be directly implanted for diabetes therapy. The advantage of alginate encapsulation lies in its capability to immunoisolate,along with the added possibility of scalable culture. We have evaluated the possibility of encapsulating hESCs at different stages of differentiation. Encapsulation of predifferentiated cells resulted in insufficient cellular yield and differentiation. On the other hand,encapsulation of undifferentiated hESCs followed by differentiation induction upon encapsulation,resulted in the highest viability and differentiation. More striking was that alginate encapsulation resulted in a much stronger differentiation compared to parallel 2D cultures,resulting in 20-fold increase in c-peptide protein synthesis. To elucidate the mechanism contributing to encapsulation-mediated enhancement in hESC maturation,investigation of the signaling pathways revealed interesting insight. While the phospho-protein levels of all the tested signaling molecules were lower under encapsulation,the ratio of pSMAD/pAKT was significantly higher,indicating a more efficient signal transduction under encapsulation. These results clearly demonstrate that alginate encapsulation of hESCs and differentiation to islet-cells types provides a potentially translatable treatment option for type1 diabetes.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Jaatinen T et al. (MAR 2006)
Stem cells (Dayton,Ohio) 24 3 631--41
Global gene expression profile of human cord blood-derived CD133+ cells.
Human cord blood (CB)-derived CD133+ cells carry characteristics of primitive hematopoietic cells and proffer an alternative for CD34+ cells in hematopoietic stem cell (HSC) transplantation. To characterize the CD133+ cell population on a genetic level,a global expression analysis of CD133+ cells was performed using oligonucleotide microarrays. CD133+ cells were purified from four fresh CB units by immunomagnetic selection. All four CD133+ samples showed significant similarity in their gene expression pattern,whereas they differed clearly from the CD133- control samples. In all,690 transcripts were differentially expressed between CD133+ and CD133- cells. Of these,393 were increased and 297 were decreased in CD133+ cells. The highest overexpression was noted in genes associated with metabolism,cellular physiological processes,cell communication,and development. A set of 257 transcripts expressed solely in the CD133+ cell population was identified. Colony-forming unit (CFU) assay was used to detect the clonal progeny of precursors present in the studied cell populations. The results demonstrate that CD133+ cells express primitive markers and possess clonogenic progenitor capacity. This study provides a gene expression profile for human CD133+ cells. It presents a set of genes that may be used to unravel the properties of the CD133+ cell population,assumed to be highly enriched in HSCs.
View Publication
产品类型:
产品号#:
04434
04444
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
Park I-H et al. (JAN 2008)
Nature 451 7175 141--6
Reprogramming of human somatic cells to pluripotency with defined factors.
Pluripotency pertains to the cells of early embryos that can generate all of the tissues in the organism. Embryonic stem cells are embryo-derived cell lines that retain pluripotency and represent invaluable tools for research into the mechanisms of tissue formation. Recently,murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4,Sox2,Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Using these same factors,we have derived iPS cells from fetal,neonatal and adult human primary cells,including dermal fibroblasts isolated from a skin biopsy of a healthy research subject. Human iPS cells resemble embryonic stem cells in morphology and gene expression and in the capacity to form teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogramme human cells to pluripotency,and establish a method whereby patient-specific cells might be established in culture.
View Publication
Doxycycline enhances survival and self-renewal of human pluripotent stem cells.
We here report that doxycycline,an antibacterial agent,exerts dramatic effects on human embryonic stem and induced pluripotent stem cells (hESC/iPSCs) survival and self-renewal. The survival-promoting effect was also manifest in cultures of neural stem cells (NSCs) derived from hESC/iPSCs. These doxycycline effects are not associated with its antibacterial action,but mediated by direct activation of a PI3K-AKT intracellular signal. These findings indicate doxycycline as a useful supplement for stem cell cultures,facilitating their growth and maintenance.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07909
07920
85850
85857
85870
85875
产品名:
IV型胶原酶(1mg /mL)
ACCUTASE™
mTeSR™1
mTeSR™1
Merkle FT et al. (FEB 2015)
Development (Cambridge,England) 142 4 633--643
Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells.
Hypothalamic neurons orchestrate many essential physiological and behavioral processes via secreted neuropeptides,and are relevant to human diseases such as obesity,narcolepsy and infertility. We report the differentiation of human pluripotent stem cells into many of the major types of neuropeptidergic hypothalamic neurons,including those producing pro-opiolemelanocortin,agouti-related peptide,hypocretin/orexin,melanin-concentrating hormone,oxytocin,arginine vasopressin,corticotropin-releasing hormone (CRH) or thyrotropin-releasing hormone. Hypothalamic neurons can be generated using a 'self-patterning' strategy that yields a broad array of cell types,or via a more reproducible directed differentiation approach. Stem cell-derived human hypothalamic neurons share characteristic morphological properties and gene expression patterns with their counterparts in vivo,and are able to integrate into the mouse brain. These neurons could form the basis of cellular models,chemical screens or cellular therapies to study and treat common human diseases.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Rezania A et al. (JAN 2011)
Diabetes 60 1 239--47
Production of functional glucagon-secreting α-cells from human embryonic stem cells.
OBJECTIVE: Differentiation of human embryonic stem (hES) cells to fully developed cell types holds great therapeutic promise. Despite significant progress,the conversion of hES cells to stable,fully differentiated endocrine cells that exhibit physiologically regulated hormone secretion has not yet been achieved. Here we describe an efficient differentiation protocol for the in vitro conversion of hES cells to functional glucagon-producing α- cells. RESEARCH DESIGN AND METHODS: Using a combination of small molecule screening and empirical testing,we developed a six-stage differentiation protocol for creating functional α-cells. An extensive in vitro and in vivo characterization of the differentiated cells was performed. RESULTS: A high rate of synaptophysin expression (textgreater75%) and robust expression of glucagon and the α-cell transcription factor ARX was achieved. After a transient polyhormonal state in which cells coexpress glucagon and insulin,maturation in vitro or in vivo resulted in depletion of insulin and other β-cell markers with concomitant enrichment of α-cell markers. After transplantation,these cells secreted fully processed,biologically active glucagon in response to physiologic stimuli including prolonged fasting and amino acid challenge. Moreover,glucagon release from transplanted cells was sufficient to reduce demand for pancreatic glucagon,resulting in a significant decrease in pancreatic α-cell mass. CONCLUSIONS: These results indicate that fully differentiated pancreatic endocrine cells can be created via stepwise differentiation of hES cells. These cells may serve as a useful screening tool for the identification of compounds that modulate glucagon secretion as well as those that promote the transdifferentiation of α-cells to β-cells.
View Publication
产品类型:
产品号#:
72392
72394
产品名:
RepSox(盐酸盐)
RepSox(盐酸盐)
Raouf A and Sun YJ ( 2013)
Methods in molecular biology (Clifton,N.J.) 946 363--381
In vitro methods to culture primary human breast epithelial cells.
Current evidence suggests that much like leukemia,breast tumors are maintained by a small subpopulation of tumor cells that have stem cell properties. These cancer stem cells are envisaged to be responsible for tumor formation and relapse. Therefore,knowledge about their nature will provide a platform to develop therapies to eliminate these breast cancer stem cells. This concept highlights the need to understand the mechanisms that regulate the normal functions of the breast stem cells and their immediate progeny as alterations to these same mechanisms can cause these primitive cells to act as cancer stem cells. The study of the primitive cell functions relies on the ability to isolate them from primary sources of breast tissue. This chapter describes processing of discarded tissue from reduction mammoplasty samples as sources of normal primary human breast epithelial cells and describes cell culture systems to grow single-cell suspensions prepared from these reduction samples in vitro.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™人培养基试剂盒
Jalink K et al. (APR 1995)
The Biochemical journal 307 ( Pt 2 609--16
Lysophosphatidic acid-induced Ca2+ mobilization in human A431 cells: structure-activity analysis.
Lysophosphatidic acid (LPA; 1-acyl-sn-glycero-3-phosphate) is a platelet-derived lipid mediator that activates its own G-protein-coupled receptor to trigger phospholipase C-mediated Ca2+ mobilization and other effector pathways in numerous cell types. In this study we have examined the structural features of LPA that are important for activation of the Ca(2+)-mobilizing receptor in human A431 carcinoma cells,which show an EC50 for oleoyl-LPA as low as 0.2 nM. When the acyl chain at the sn-1 position is altered,the rank order of potency is oleoyl-LPA textgreater arachidonoyl-LPA textgreater linolenoyl-LPA textgreater linoleoyl-LPA textgreater stearoyl-LPA = palmitoyl-LPA textgreater myristoyl-LPA. The shorter-chain species,lauroyl- and decanoyl-LPA,show little or no activity. Ether-linked LPA (1-O-hexadecyl-sn-glycero-3-phosphate) is somewhat less potent than the corresponding ester-linked LPA; its stereoisomer is about equally active. Deletion of the glycerol backbone causes a 1000-fold decrease in potency. Replacement of the phosphate group in palmitoyl-LPA by a hydrogen- or methyl-phosphonate moiety results in complete loss of activity. A phosphonate analogue with a methylene group replacing the oxygen at sn-3 has strongly decreased activity. All three phosphonate analogues induce cell lysis at doses textgreater 15 microM. Similarly,the methyl and ethyl esters of palmitoyl-LPA are virtually inactive and become cytotoxic at micromolar doses. None of the LPA analogues tested has antagonist activity. Sphingosine 1-phosphate,a putative messenger with some structural similarities to LPA,elicits a transient rise in intracellular [Ca2+] only at micromolar doses; however,cross-desensitization experiments indicate that sphingosine 1-phosphate does not act through the LPA receptor. The results indicate that,although many features of the LPA structure are important for optimal activity,the phosphate group is most critical,suggesting that this moiety is directly involved in receptor activation.
View Publication
产品类型:
产品号#:
72692
72694
产品名:
1-Oleoyl Lysophosphatidic Acid (Sodium Salt)
Doyle LA et al. (DEC 1998)
Proceedings of the National Academy of Sciences of the United States of America 95 26 15665--70
A multidrug resistance transporter from human MCF-7 breast cancer cells.
MCF-7/AdrVp is a multidrug-resistant human breast cancer subline that displays an ATP-dependent reduction in the intracellular accumulation of anthracycline anticancer drugs in the absence of overexpression of known multidrug resistance transporters such as P glycoprotein or the multidrug resistance protein. RNA fingerprinting led to the identification of a 2.4-kb mRNA that is overexpressed in MCF-7/AdrVp cells relative to parental MCF-7 cells. The mRNA encodes a 655-aa [corrected] member of the ATP-binding cassette superfamily of transporters that we term breast cancer resistance protein (BCRP). Enforced expression of the full-length BCRP cDNA in MCF-7 breast cancer cells confers resistance to mitoxantrone,doxorubicin,and daunorubicin,reduces daunorubicin accumulation and retention,and causes an ATP-dependent enhancement of the efflux of rhodamine 123 in the cloned transfected cells. BCRP is a xenobiotic transporter that appears to play a major role in the multidrug resistance phenotype of MCF-7/AdrVp human breast cancer cells.
View Publication
产品类型:
产品号#:
产品名:
M. K. Dame et al. (FEB 2018)
Development (Cambridge,England) 145 6
Identification, isolation and characterization of human LGR5-positive colon adenoma cells.
The intestine is maintained by stem cells located at the base of crypts and distinguished by the expression of LGR5. Genetically engineered mouse models have provided a wealth of information about intestinal stem cells,whereas less is known about human intestinal stem cells owing to difficulty detecting and isolating these cells. We established an organoid repository from patient-derived adenomas,adenocarcinomas and normal colon,which we analyzed for variants in 71 colorectal cancer (CRC)-associated genes. Normal and neoplastic colon tissue organoids were analyzed by immunohistochemistry and fluorescent-activated cell sorting for LGR5. LGR5-positive cells were isolated from four adenoma organoid lines and were subjected to RNA sequencing. We found that LGR5 expression in the epithelium and stroma was associated with tumor stage,and by integrating functional experiments with LGR5-sorted cell RNA sequencing data from adenoma and normal organoids,we found correlations between LGR5 and CRC-specific genes,including dickkopf WNT signaling pathway inhibitor 4 (DKK4) and SPARC-related modular calcium binding 2 (SMOC2). Collectively,this work provides resources,methods and new markers to isolate and study stem cells in human tissue homeostasis and carcinogenesis.
View Publication
产品类型:
产品号#:
产品名:
(Sep 2024)
International Journal of Biological Sciences 20 13
Chimerization of human ESC-derived extraembryonic cells with the mouse blastocyst
It has been reported that human embryonic stem cells (hESCs) treated with BMP4 and inhibitors of TGF? signaling (A83-01) and FGF signaling (PD173074),called BAP,can efficiently differentiate to extraembryonic (ExE) cells in vitro. Due to restricted access to human embryos,it is ethically impossible to test the developmental potential of ExE cells in vivo. Here,we demonstrate that most ExE cells expressed molecular markers for both trophoblasts (TBs) and amniotic cells (ACs). Following intra-uterine transplantation,ExE cells contributed to the mouse placenta. More interestingly,ExE cells could chimerize with the mouse blastocyst as,after injection into the blastocyst,they penetrated its trophectoderm. After implantation of the injected blastocysts into surrogate mice,human cells were found at E14 in placental labyrinth,junction zones,and even near the uterine decidua,expressed placental markers,and secreted human chorionic gonadotropin. Surprisingly,ExE cells also contributed to cartilages of the chimeric embryo with some expressing the chondrogenic marker SOX9,consistent with the mesodermal potential of TBs and ACs in the placenta. Deleting MSX2,a mesodermal determinant,restricted the contribution of ExE cells to the placenta. Thus,we conclude that hESC-derived ExE cells can chimerize with the mouse blastocyst and contribute to both the placenta and cartilages of the chimera consistent with their heteogenious nature. Intra-uterus and intra-blastocyst injections are novel and sensitive methods to study the developmental potential of ExE cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
Gao L et al. (APR 2000)
Blood 95 7 2198--203
Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1.
Hematologic malignancies such as acute and chronic myeloid leukemia are characterized by the malignant transformation of immature CD34(+) progenitor cells. Transformation is associated with elevated expression of the Wilm's tumor gene encoded transcription factor (WT1). Here we demonstrate that WT1 can serve as a target for cytotoxic T lymphocytes (CTL) with exquisite specificity for leukemic progenitor cells. HLA-A0201- restricted CTL specific for WT1 kill leukemia cell lines and inhibit colony formation by transformed CD34(+) progenitor cells isolated from patients with chronic myeloid leukemia (CML),whereas colony formation by normal CD34(+) progenitor cells is unaffected. Thus,the tissue-specific transcription factor WT1 is an ideal target for CTL-mediated purging of leukemic progenitor cells in vitro and for antigen-specific therapy of leukemia and other WT1-expressing malignancies in vivo.
View Publication