M. Harmati et al. (oct 2019)
Scientific reports 9 1 15329
Small extracellular vesicles convey the stress-induced adaptive responses of melanoma cells.
Exosomes are small extracellular vesicles (sEVs),playing a crucial role in the intercellular communication in physiological as well as pathological processes. Here,we aimed to study whether the melanoma-derived sEV-mediated communication could adapt to microenvironmental stresses. We compared B16F1 cell-derived sEVs released under normal and stress conditions,including cytostatic,heat and oxidative stress. The miRNome and proteome showed substantial differences across the sEV groups and bioinformatics analysis of the obtained data by the Ingenuity Pathway Analysis also revealed significant functional differences. The in silico predicted functional alterations of sEVs were validated by in vitro assays. For instance,melanoma-derived sEVs elicited by oxidative stress increased Ki-67 expression of mesenchymal stem cells (MSCs); cytostatic stress-resulted sEVs facilitated melanoma cell migration; all sEV groups supported microtissue generation of MSC-B16F1 co-cultures in a 3D tumour matrix model. Based on this study,we concluded that (i) molecular patterns of tumour-derived sEVs,dictated by the microenvironmental conditions,resulted in specific response patterns in the recipient cells; (ii) in silico analyses could be useful tools to predict different stress responses; (iii) alteration of the sEV-mediated communication of tumour cells might be a therapy-induced host response,with a potential influence on treatment efficacy.
View Publication
产品类型:
产品号#:
05790
05792
05793
05794
05795
产品名:
BrainPhys™神经元培养基
BrainPhys™神经元培养基和SM1试剂盒
BrainPhys™ 神经元培养基N2-A和SM1试剂盒
BrainPhys™原代神经元试剂盒
BrainPhys™ hPSC 神经元试剂盒
Shi X et al. (JAN 2013)
Cellular physiology and biochemistry : international journal of experimental cellular physiology,biochemistry,and pharmacology 32 2 459--75
AICAR sustains J1 mouse embryonic stem cell self-renewal and pluripotency by regulating transcription factor and epigenetic modulator expression.
BACKGROUND/AIMS [corrected] Embryonic stem cells (ES cells) have the capacity to propagate indefinitely,maintain pluripotency,and differentiate into any cell type under defined conditions. As a result,they are considered to be the best model system for research into early embryonic development. AICA ribonucleotide (AICAR) is an activator of AMP-activated protein kinase (AMPK) that is thought to affect ES cell function,but its role in ES cell fate decision is unclear. METHODS In this study,we performed microarray analysis to investigate AICAR downstream targets and further understand its effect on ES cells. RESULTS Our microarray data demonstrated that AICAR can significantly up-regulate pluripotency-associated genes and down-regulate differentiation-associated transcription factors. Although AICAR cannot maintain ES cell identity without LIF,it can antagonize the action of RA-induced differentiation. Using those differentially expressed genes identified,we performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis with the Database for Annotation,Visualization and Integrated Discovery (DAVID) online system. AICAR was not only shown to influence the AMPK pathway,but also act on other signaling pathways such as BMP,MAPK and TGF-β,to maintain the stemness of J1 ES cells. Furthermore,AICAR modulated ES cell epigenetic modification by altering the expression of epigenetic-associated proteins,including Dnmt3a,Dnmt3b,Smarca2,Mbd3,and Arid1a,or through regulating the transcription of long intervening non-coding RNA (lincRNA). CONCLUSION Taken together,our work suggests that AICAR is capable of maintaining ES cell self-renewal and pluripotency,which could be useful in future medical treatment.
View Publication
产品类型:
产品号#:
72704
产品名:
AICAR
D. I. Kotov and M. K. Jenkins (jun 2019)
Current protocols in immunology 125 1 e75
Peptide:MHCII Tetramer-Based Cell Enrichment for the Study of Epitope-Specific CD4+ T Cells.
Epitope-specific CD4+ T cells can be labeled in complex cell mixtures from secondary lymphoid organs with fluorophore-labeled peptide:major histocompatibility complex class II (p:MHCII) tetramers and then detected by flow cytometry. Magnetic enrichment of tetramer-bound cells before flow cytometry increases the sensitivity of detection to the point where epitope-specific cells can be studied even when very rare at early and late times after the host has been exposed to the epitope. This method is very useful for studying polyclonal epitope-specific CD4+ T cells under physiological conditions. {\textcopyright} 2019 by John Wiley {\&} Sons,Inc.
View Publication
产品类型:
产品号#:
06005
产品名:
IntestiCult™ 肠道类器官生长培养基 (小鼠)
Fares I et al. (SEP 2014)
Science (New York,N.Y.) 345 6203 1509--12
Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal.
The small number of hematopoietic stem and progenitor cells in cord blood units limits their widespread use in human transplant protocols. We identified a family of chemically related small molecules that stimulates the expansion ex vivo of human cord blood cells capable of reconstituting human hematopoiesis for at least 6 months in immunocompromised mice. The potent activity of these newly identified compounds,UM171 being the prototype,is independent of suppression of the aryl hydrocarbon receptor,which targets cells with more-limited regenerative potential. The properties of UM171 make it a potential candidate for hematopoietic stem cell transplantation and gene therapy.
View Publication
产品类型:
产品号#:
72332
72334
72912
72914
产品名:
UM729
Sun SY et al. (SEP 2000)
Molecular pharmacology 58 3 508--14
Dual mechanisms of action of the retinoid CD437: nuclear retinoic acid receptor-mediated suppression of squamous differentiation and receptor-independent induction of apoptosis in UMSCC22B human head and neck squamous cell carcinoma cells.
The synthetic retinoid 6-[3-(adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437),which can bind to and activate the nuclear retinoic acid receptors beta and gamma (RARbeta/gamma),is a potent inducer of apoptosis in various cancer cell lines. However,this effect was reported to be independent of RARs. In this study,we compared and contrasted the potencies and mechanisms of action of CD437 and several other receptor-selective retinoids in induction of apoptosis and modulation of squamous differentiation in UMSCC22B human head and neck squamous cell carcinoma cell line. CD437 and the structurally related retinoid CD2325 exhibited almost equal potency in inducing apoptosis,whereas several other retinoids failed to induce apoptosis. The RAR-specific pan antagonist AGN193109 failed to suppress CD437-induced apoptosis,indicating that the induction of apoptosis by CD437 was RAR-independent. c-Fos expression was induced by CD437 and CD2325 that induced apoptosis in the cell line but not by other retinoids that failed to induce apoptosis,suggesting a role for c-Fos in CD437-induced apoptosis. At low concentration (0.01 microM),CD437 shared with several other receptor-selective retinoids the ability to suppress the mRNA levels of the squamous differentiation markers Spr1,involucrin,and cytokeratin 1. This effect of CD437 could be blocked by AGN193109. We conclude that CD437 can exert its effects in UMSCC22B human human head and neck squamous cell carcinoma cells by at least two mechanisms: RAR-mediated suppression of squamous differentiation and RAR-independent induction of apoptosis.
View Publication
产品类型:
产品号#:
72722
72724
产品名:
CD437
CD437
Yoon D et al. (SEP 2006)
The Journal of biological chemistry 281 35 25703--11
Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development.
Hypoxia-inducible factor-1 (HIF-1) regulates the transcription of genes whose products play critical roles in energy metabolism,erythropoiesis,angiogenesis,and cell survival. Limited information is available concerning its function in mammalian hematopoiesis. Previous studies have demonstrated that homozygosity for a targeted null mutation in the Hif1alpha gene,which encodes the hypoxia-responsive alpha subunit of HIF-1,causes cardiac,vascular,and neural malformations resulting in lethality by embryonic day 10.5 (E10.5). This study revealed reduced myeloid multilineage and committed erythroid progenitors in HIF-1alpha-deficient embryos,as well as decreased hemoglobin content in erythroid colonies from HIF-1alpha-deficient yolk sacs at E9.5. Dysregulation of erythropoietin (Epo) signaling was evident from a significant decrease in mRNA levels of Epo receptor (EpoR) in Hif1alpha-/- yolk sac as well as Epo and EpoR mRNA in Hif1alpha-/- embryos. The erythropoietic defects in HIF-1alpha-deficient erythroid colonies could not be corrected by cytokines,such as vascular endothelial growth factor and Epo,but were ameliorated by Fe-SIH,a compound delivering iron into cells independently of iron transport proteins. Consistent with profound defects in iron homeostasis,Hif1alpha-/- yolk sac and/or embryos demonstrated aberrant mRNA levels of hepcidin,Fpn1,Irp1,and frascati. We conclude that dysregulated expression of genes encoding Epo,EpoR,and iron regulatory proteins contributes to defective erythropoiesis in Hif1alpha-/- yolk sacs. These results identify a novel role for HIF-1 in the regulation of iron homeostasis and reveal unexpected regulatory differences in Epo/EpoR signaling in yolk sac and embryonic erythropoiesis.
View Publication
产品类型:
产品号#:
03234
03236
产品名:
MethoCult™M3234
MethoCult™SF M3236
Dorrell C et al. (JUN 2011)
Molecular and Cellular Endocrinology 339 1-2 144--150
Isolation of mouse pancreatic alpha, beta, duct and acinar populations with cell surface markers
Tools permitting the isolation of live pancreatic cell subsets for culture and/or molecular analysis are limited. To address this,we developed a collection of monoclonal antibodies with selective surface labeling of endocrine and exocrine pancreatic cell types. Cell type labeling specificity and cell surface reactivity were validated on mouse pancreatic sections and by gene expression analysis of cells isolated using FACS. Five antibodies which marked populations of particular interest were used to isolate and study viable populations of purified pancreatic ducts,acinar cells,and subsets of acinar cells from whole pancreatic tissue or of alpha or beta cells from isolated mouse islets. Gene expression analysis showed the presence of known endocrine markers in alpha and beta cell populations and revealed that TTR and DPPIV are primarily expressed in alpha cells whereas DGKB and GPM6A have a beta cell specific expression profile.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
03831
产品名:
ClonaCell™-HY 杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY PEG (融合)
ClonaCell™-HY液体帽子选择培养基
Zheng X et al. (MAY 2012)
Stem Cells 30 5 910--922
Cnot1, Cnot2, and Cnot3 maintain mouse and human ESC identity and inhibit extraembryonic differentiation
Embryonic stem cell (ESC) identity and self-renewal is maintained by extrinsic signaling pathways and intrinsic gene regulatory networks. Here,we show that three members of the Ccr4-Not complex,Cnot1,Cnot2,and Cnot3,play critical roles in maintaining mouse and human ESC identity as a protein complex and inhibit differentiation into the extraembryonic lineages. Enriched in the inner cell mass of blastocysts,these Cnot genes are highly expressed in ESC and downregulated during differentiation. In mouse ESCs,Cnot1,Cnot2,and Cnot3 are important for maintenance in both normal conditions and the 2i/LIF medium that supports the ground state pluripotency. Genetic analysis indicated that they do not act through known self-renewal pathways or core transcription factors. Instead,they repress the expression of early trophectoderm (TE) transcription factors such as Cdx2. Importantly,these Cnot genes are also necessary for the maintenance of human ESCs,and silencing them mainly lead to TE and primitive endoderm differentiation. Together,our results indicate that Cnot1,Cnot2,and Cnot3 represent a novel component of the core self-renewal and pluripotency circuitry conserved in mouse and human ESCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Das I et al. (SEP 2013)
Science translational medicine 5 201 201ra120
Hedgehog agonist therapy corrects structural and cognitive deficits in a Down syndrome mouse model.
Down syndrome (DS) is among the most frequent genetic causes of intellectual disability,and ameliorating this deficit is a major goal in support of people with trisomy 21. The Ts65Dn mouse recapitulates some major brain structural and behavioral phenotypes of DS,including reduced size and cellularity of the cerebellum and learning deficits associated with the hippocampus. We show that a single treatment of newborn mice with the Sonic hedgehog pathway agonist SAG 1.1 (SAG) results in normal cerebellar morphology in adults. Further,SAG treatment at birth rescued phenotypes associated with hippocampal deficits that occur in untreated adult Ts65Dn mice. This treatment resulted in behavioral improvements and normalized performance in the Morris water maze task for learning and memory. SAG treatment also produced physiological effects and partially rescued both N-methyl-d-aspartate (NMDA) receptor-dependent synaptic plasticity and NMDA/AMPA receptor ratio,physiological measures associated with memory. These outcomes confirm an important role for the hedgehog pathway in cerebellar development and raise the possibility for its direct influence in hippocampal function. The positive results from this approach suggest a possible direction for therapeutic intervention to improve cognitive function for this population.
View Publication
产品类型:
产品号#:
73412
73414
产品名:
SAG
SAG
M. J. Bailey et al. (NOV 2018)
Nature communications 9 1 4560
Human antibodies targeting Zika virus NS1 provide protection against disease in a mouse model.
Zika virus is a mosquito-borne flavivirus closely related to dengue virus that can cause severe disease in humans,including microcephaly in newborns and Guillain-Barr{\'{e}} syndrome in adults. Specific treatments and vaccines for Zika virus are not currently available. Here,we isolate and characterize four monoclonal antibodies (mAbs) from an infected patient that target the non-structural protein NS1. We show that while these antibodies are non-neutralizing,NS1-specific mAbs can engage Fc$\gamma$R without inducing antibody dependent enhancement (ADE) of infection in vitro. Moreover,we demonstrate that mAb AA12 has protective efficacy against lethal challenges of African and Asian lineage strains of Zika virus in Stat2-/- mice. Protection is Fc-dependent,as a mutated antibody unable to activate known Fc effector functions or complement is not protective in vivo. This study highlights the importance of the ZIKV NS1 protein as a potential vaccine antigen.
View Publication
产品类型:
产品号#:
17955
17955RF
产品名:
EasySep™人NK细胞分选试剂盒
RoboSep™ 人NK细胞分选试剂盒
(Oct 2024)
Blood Cancer Journal 14 1
The DLEU2/miR-15a/miR-16-1 cluster shapes the immune microenvironment of chronic lymphocytic leukemia
The development and progression of chronic lymphocytic leukemia (CLL) depend on genetic abnormalities and on the immunosuppressive microenvironment. We have explored the possibility that genetic drivers might be responsible for the immune cell dysregulation that shapes the protumor microenvironment. We performed a transcriptome analysis of coding and non-coding RNAs (ncRNAs) during leukemia progression in the Rag2−/−γc−/− MEC1-based xenotransplantation model. The DLEU2/miR-16 locus was found downmodulated in monocytes/macrophages of leukemic mice. To validate the role of this cluster in the tumor immune microenvironment,we generated a mouse model that simultaneously mimics the overexpression of hTCL1 and the germline deletion of the minimal deleted region (MDR) encoding the DLEU2/miR-15a/miR-16-1 cluster. This model provides an innovative and faster CLL system where monocyte differentiation and macrophage polarization are exacerbated,and T-cells are dysfunctional. MDR deletion inversely correlates with the levels of predicted target proteins including BCL2 and PD1/PD-L1 on murine CLL cells and immune cells. The inverse correlation of miR-15a/miR-16-1 with target proteins has been confirmed on patient-derived immune cells. Forced expression of miR-16-1 interferes with monocyte differentiation into tumor-associated macrophages,indicating that selected ncRNAs drive the protumor phenotype of non-malignant immune cells.
View Publication