Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines.
Efficient differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to a variety of lineages requires step-wise approaches replicating the key commitment stages found during embryonic development. Here we show that expression of PdgfR-α segregates mouse ESC-derived Flk-1 mesoderm into Flk-1(+)PdgfR-α(+) cardiac and Flk-1(+)PdgfR-α(-) hematopoietic subpopulations. By monitoring Flk-1 and PdgfR-α expression,we found that specification of cardiac mesoderm and cardiomyocytes is determined by remarkably small changes in levels of Activin/Nodal and BMP signaling. Translation to human ESCs and iPSCs revealed that the emergence of cardiac mesoderm could also be monitored by coexpression of KDR and PDGFR-α and that this process was similarly dependent on optimal levels of Activin/Nodal and BMP signaling. Importantly,we found that individual mouse and human pluripotent stem cell lines require optimization of these signaling pathways for efficient cardiac differentiation,illustrating a principle that may well apply in other contexts.
View Publication
产品类型:
产品号#:
72102
72232
72234
产品名:
Dorsomorphin
SB431542 (Hydrate)
SB431542(水合物)
Paul SR et al. (OCT 1990)
Proceedings of the National Academy of Sciences of the United States of America 87 19 7512--6
Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine.
Hematopoiesis occurs in close association with a complex network of cells loosely termed the hematopoietic microenvironment. Analysis of the mechanisms of microenvironmental regulation of hematopoiesis has been hindered by the complexity of the microenvironment as well as the heterogeneity of hematopoietic stem cells and early progenitor cells. We have established immortalized primate bone marrow-derived stromal cell lines to facilitate analysis of the interactions of hematopoietic cells with the microenvironment in a large animal species. One such line,PU-34,was found to produce a variety of growth factors,including an activity that stimulates the proliferation of an interleukin 6-dependent murine plasmacytoma cell line. A cDNA encoding the plasmacytoma stimulatory activity was isolated through functional expression cloning in mammalian cells. The nucleotide sequence contained a single long reading frame of 597 nucleotides encoding a predicted 199-amino acid polypeptide. The amino acid sequence of this cytokine,designated interleukin 11 (IL-11),did not display significant similarity with any other sequence in the GenBank data base. Preliminary biological characterization indicates that in addition to stimulating plasmacytoma proliferation,IL-11 stimulates the T-cell-dependent development of immunoglobulin-producing B cells and synergizes with IL-3 in supporting murine megakaryocyte colony formation. These properties implicate IL-11 as an additional multifunctional regulator in the hematopoietic microenvironment.
View Publication
产品类型:
产品号#:
产品名:
Smith Sa et al. (MAR 2012)
Journal of Virology 86 5 2665--75
Persistence of circulating memory B cell clones with potential for Dengue virus disease enhancement for decades following infection
Symptomatic dengue virus infection ranges in disease severity from an influenza-like illness to life-threatening shock. One model of the mechanism underlying severe disease proposes that weakly neutralizing,dengue serotype cross-reactive antibodies induced during a primary infection facilitate virus entry into Fc receptor-bearing cells during a subsequent secondary infection,increasing viral replication and the release of cytokines and vasoactive mediators,culminating in shock. This process has been termed antibody-dependent enhancement of infection and has significantly hindered vaccine development. Much of our understanding of this process has come from studies using mouse monoclonal antibodies (MAbs); however,antibody responses in mice typically exhibit less complexity than those in humans. A better understanding of the humoral immune response to natural dengue virus infection in humans is sorely needed. Using a high-efficiency human hybridoma technology,we isolated 37 hybridomas secreting human MAbs to dengue viruses from 12 subjects years or even decades following primary or secondary infection. The majority of the human antibodies recovered were broadly cross-reactive,directed against either envelope or premembrane proteins,and capable of enhancement of infection in vitro; few exhibited serotype-specific binding or potent neutralizing activity. Memory B cells encoding enhancing antibodies predominated in the circulation,even two or more decades following infection. Mapping the epitopes and activity of naturally occurring dengue antibodies should prove valuable in determining whether the enhancing and neutralizing activity of antibodies can be separated. Such principles could be used in the rational design of vaccines that enhance the induction of neutralizing antibodies,while lowering the risk of dengue shock syndrome.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
产品名:
ClonaCell™-HY 杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY PEG (融合)
(Jul 2024)
bioRxiv 4 3
Cryopreservation of neuroectoderm on a pillar plate and
Cryopreservation in cryovials extends cell storage at low temperatures,and advances in organoid cryopreservation improve reproducibility and reduce generation time. However,cryopreserving human organoids presents challenges due to the limited diffusion of cryoprotective agents (CPAs) into the organoid core and the potential toxicity of these agents. To overcome these obstacles,we developed a cryopreservation technique using a pillar plate platform. To illustrate cryopreservation application to human brain organoids (HBOs),early-stage HBOs were produced by differentiating induced pluripotent stem cells (iPSCs) into neuroectoderm (NEs) in an ultralow atachement (ULA) 384-well plate. These NEs were transferred and encapsulated in Matrigel on the pillar plate. The early-stage HBOs on the pillar plate were exposed to four commercially available CPAs,including PSC cryopreservation kit,CryoStor CS10,3dGRO,and 10% DMSO,before being frozen overnight at ?80°C and subsequently stored in a liquid nitrogen dewar. We examined the impact of CPA type,organoid size,and CPA exposure duration on cell viability post-thaw. Additionally,the differentiation of early-stage HBOs on the pillar plate was assessed using RT-qPCR and immunofluorescence staining. The PSC cryopreservation kit proved to be the least toxic for preserving these HBOs on the pillar plate. Notably,smaller HBOs showed higher cell viability post-cryopreservation than larger ones. An incubation period of 80 minutes with the PSC kit was essential to ensure optimal CPA diffusion into HBOs with a diameter of 400 – 600 ?m. These cryopreserved early-stage HBOs successfully matured over 30 days,exhibiting gene expression patterns akin to non-cryopreserved HBOs. The cryopreserved early-stage HBOs on the pillar plate maintained high viability after thawing and successfully differentiated into mature HBOs. This on-chip cryopreservation method could extend to other small organoids,by integrating cryopreservation,thawing,culturing,staining,rinsing,and imaging processes within a single system,thereby preserving the 3D structure of the organoids.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
F. Borot et al. (May 2025)
Nature Communications 16
Multiplex base editing to protect from CD33 directed drugs for immune and gene therapy
The selection of genetically engineered immune or hematopoietic cells in vivo after gene editing remains a clinical problem and requires a method to spare on-target toxicity to normal cells. Here,we develop a base editing approach exploiting a naturally occurring CD33 single nucleotide polymorphism leading to removal of full-length CD33 surface expression on edited cells. CD33 editing in human and nonhuman primate hematopoietic stem and progenitor cells protects myeloid progeny from CD33-targeted therapeutics without affecting normal hematopoiesis in vivo,thus demonstrating potential for improved immunotherapies with reduced off-leukemia toxicity. For broader application to gene therapies,we demonstrate highly efficient (>70%) multiplexed adenine base editing of the CD33 and gamma globin genes,resulting in long-term persistence of dual gene-edited cells with HbF reactivation in nonhuman primates. Using the CD33 antibody-drug conjugate Gemtuzumab Ozogamicin,we show resistance of engrafted,multiplex edited human cells in vivo,and a 2-fold enrichment for edited cells in vitro. Together,our results highlight the potential of adenine base editors for improved immune and gene therapies. Subject terms: Haematopoietic stem cells,Bone marrow transplantation,Cell biology
View Publication
产品类型:
产品号#:
09600
09605
09650
09655
产品名:
StemSpan™ SFEM
StemSpan™ SFEM II
StemSpan™ SFEM
StemSpan™ SFEM II
Storms RW et al. (JUL 2005)
Blood 106 1 95--102
Distinct hematopoietic progenitor compartments are delineated by the expression of aldehyde dehydrogenase and CD34.
A broad range of hematopoietic stem cells and progenitors reside within a fraction of umbilical cord blood (UCB) that exhibits low light scatter properties (SSC(lo)) and high expression of aldehyde dehydrogenase (ALDH(br)). Many SSC(lo) ALDH(br) cells coexpress CD34; however,other cells express either ALDH or CD34. To investigate the developmental potential of these cell subsets,purified ALDH(br) CD34+,ALDH(neg) CD34+,and ALDH(br) CD34(neg) UCB cells were characterized within a variety of in vivo and in vitro assays. Primitive progenitors capable of multilineage development were monitored in long- and short-term repopulation assays performed on nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice,and in primary and secondary long-term culture assays. These progenitors were highly enriched within the ALDH(br) CD34+ fraction. This cell fraction also enriched short-term myeloid progenitors that were detected in vitro. By comparison,ALDH(neg) CD34+ cells contained few primitive progenitors and had diminished short-term myeloid potential but exhibited enhanced short-term natural killer (NK) cell development in vitro. The ALDH(br) CD34(neg) cells were not efficiently supported by any of the assays used. These studies suggested that in particular the expression of ALDH delineated distinct CD34+ stem cell and progenitor compartments. The differential expression of ALDH may provide a means to explore normal and malignant processes associated with myeloid and lymphoid development.
View Publication
Kolhar P et al. (APR 2010)
Journal of biotechnology 146 3 143--6
Synthetic surfaces for human embryonic stem cell culture.
Human embryonic stem cells (hESCs) have numerous potential biomedical applications owing to their unique abilities for self-renewal and pluripotency. Successful clinical application of hESCs and derivatives necessitates the culture of these cells in a fully defined environment. We have developed a novel peptide-based surface that uses a high-affinity cyclic RGD peptide for culture of hESCs under chemically defined conditions.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Steinhardt LC et al. (DEC 2011)
The American journal of tropical medicine and hygiene 85 6 1015--24
Review: Malaria chemoprophylaxis for travelers to Latin America.
Because of recent declining malaria transmission in Latin America,some authorities have recommended against chemoprophylaxis for most travelers to this region. However,the predominant parasite species in Latin America,Plasmodium vivax,can form hypnozoites sequestered in the liver,causing malaria relapses. Additionally,new evidence shows the potential severity of vivax infections,warranting continued consideration of prophylaxis for travel to Latin America. Individualized travel risk assessments are recommended and should consider travel locations,type,length,and season,as well as probability of itinerary changes. Travel recommendations might include no precautions,mosquito avoidance only,or mosquito avoidance and chemoprophylaxis. There are a range of good options for chemoprophylaxis in Latin America,including atovaquone-proguanil,doxycycline,mefloquine,and--in selected areas--chloroquine. Primaquine should be strongly considered for nonpregnant,G6PD-nondeficient patients traveling to vivax-endemic areas of Latin America,and it has the added benefit of being the only drug to protect against malaria relapses.
View Publication
Loss of the Rho GTPase activating protein p190-B enhances hematopoietic stem cell engraftment potential.
Hematopoietic stem cell (HSC) engraftment is a multistep process involving HSC homing to bone marrow,self-renewal,proliferation,and differentiation to mature blood cells. Here,we show that loss of p190-B RhoGTPase activating protein,a negative regulator of Rho GTPases,results in enhanced long-term engraftment during serial transplantation. This effect is associated with maintenance of functional HSC-enriched cells. Furthermore,loss of p190-B led to marked improvement of HSC in vivo repopulation capacity during ex vivo culture without altering proliferation and multilineage differentiation of HSC and progeny. Transcriptional analysis revealed that p190-B deficiency represses the up-regulation of p16(Ink4a) in HSCs in primary and secondary transplantation recipients,providing a possible mechanism of p190-B-mediated HSC functions. Our study defines p190-B as a critical transducer element of HSC self-renewal activity and long-term engraftment,thus suggesting that p190-B is a target for HSC-based therapies requiring maintenance of engraftment phenotype.
View Publication