Human pluripotent stem cell tools for cardiac optogenetics
It is likely that arrhythmias should be avoided for therapies based on human pluripotent stem cell (hPSC)-derived cardiomyocytes (CM) to be effective. Towards achieving this goal,we introduced light-activated channelrhodopsin-2 (ChR2),a cation channel activated with 480 nm light,into human embryonic stem cells (hESC). By using in vitro approaches,hESC-CM are able to be activated with light. ChR2 is stably transduced into undifferentiated hESC via a lentiviral vector. Via directed differentiation,hESCChR2-CM are produced and subjected to optical stimulation. hESCChR2-CM respond to traditional electrical stimulation and produce similar contractility features as their wild-type counterparts but only hESCChR2-CM can be activated by optical stimulation. Here it is shown that a light sensitive protein can enable in vitro optical control of hESC-CM and that this activation occurs optimally above specific light stimulation intensity and pulse width thresholds. For future therapy,in vivo optical stimulation along with optical inhibition could allow for acute synchronization of implanted hPSC-CM with patient cardiac rhythms.
View Publication
MFGE?8, a Corona Protein on Extracellular Vesicles, Mediates Self?Renewal and Survival of Human Pluripotent Stem Cells
ABSTRACTExtracellular vesicles (EVs) and secretory factors play crucial roles in intercellular communication,but the molecular mechanisms and dynamics governing their interplay in human pluripotent stem cells (hPSCs) are poorly understood. Here,we demonstrate that hPSC?secreted milk fat globule?EGF factor 8 (MFGE?8) is the principal corona protein at the periphery of EVs,playing an essential role in controlling hPSC stemness. MFGE?8 depletion reduced EV?mediated self?renewal and survival in hPSC cultures. MFGE?8 in the EV corona bound to integrin ?v?5 expressed in the peripheral zone of hPSC colonies. It activated cyclin D1 and dynamin?1 via the AKT/GSK3? axis,promoting the growth of hPSCs and facilitating the endocytosis of EVs. Internalization of EVs alleviated oxidative stress and cell death by transporting redox and stress response proteins that increased GSH levels. Our findings demonstrate the critical role of the extracellular association of MFGE?8 and EVs in modulating the self?renewal and survival of hPSCs.
View Publication
Y. N. Yoon et al. ( 2022)
Frontiers in oncology 12 989190
Dynamic alterations in PD-1/PD-L1 expression level and immune cell profiles based on radiation response status in mouse tumor model.
INTRODUCTION Based on the immunologic effects of anti-cancer treatment and their therapeutic implications,we evaluated radiotherapy (RT)-induced dynamic alterations in programmed death-1 (PD-1)/PD ligand-1 (PD-L1) expression profiles. METHODS Local RT with 2 Gy ?— 5 or 7.5 Gy ?— 1 was administered to the CT26 mouse model. Thereafter,tumors were resected and evaluated at the following predefined timepoints according to radiation response status: baseline,early (immediately after RT),middle (beginning of tumor shrinkage),late (stable status with RT effect),and progression (tumor regrowth). PD-1/PD-L1 activity and related immune cell profiles were quantitatively assessed. RESULTS RT upregulated PD-L1 expression in tumor cells from the middle to late phase; however,the levels subsequently decreased to levels comparable to baseline in the progression phase. RT with 2 Gy ?— 5 induced a higher frequency of PD-L1+ myeloid-derived suppressor cells,with a lesser degree of tumor regression,compared to 7.5 Gy. The proportion of PD-1+ and interferon (IFN)-$\gamma$+CD8$\alpha$ T cells continued to increase. The frequency of splenic PD-1+CD8+ T cells was markedly elevated,and was sustained longer with 2 Gy ?— 5. Based on the transcriptomic data,RT stimulated the transcription of immune-related genes,leading to sequentially altered patterns. DISCUSSION The dynamic alterations in PD-1/PD-L1 expression level were observed according to the time phases of tumor regression. This study suggests the influence of tumor cell killing and radiation dosing strategy on the tumor immune microenvironment.
View Publication
产品类型:
产品号#:
100-0105
18000
100-0108
100-0109
100-0107
产品名:
EasySep™ Release人CD45正选试剂盒
EasySep™磁极
RoboSep™ Release人CD45正选试剂盒
用于人源化小鼠的RoboSep™ Release 人CD45正选试剂盒
用于人源化小鼠的EasySep™ Release 人CD45正选试剂盒
Lacout C et al. (AUG 2003)
Blood 102 4 1282--9
A defect in hematopoietic stem cell migration explains the nonrandom X-chromosome inactivation in carriers of Wiskott-Aldrich syndrome.
A defect in cell trafficking and chemotaxis plays an important role in the immune deficiency observed in Wiskott-Aldrich syndrome (WAS). In this report,we show that marrow cells from WAS protein (WASP)-deficient mice also have a defect in chemotaxis. Serial transplantation and competitive reconstitution experiments demonstrated that marrow cells,including hematopoietic progenitors and stem cells (HSCs),have decreased homing capacities that were associated with a defect in adhesion to collagen. During development,HSCs migrate from the liver to the marrow and the spleen,prompting us to ask if a defect in HSC homing during development may explain the skewed X-chromosome inactivation in WAS carriers. Preliminary evidence has shown that,in contrast to marrow progenitor cells,fetal liver progenitor cells from heterozygous females had a random X-chromosome inactivation. When fetal liver cells from WASP-carrier females were injected into irradiated recipients,a nonrandom inactivation of the X-chromosome was found at the level of hematopoietic progenitors and HSCs responsible for the short- and long-term hematopoietic reconstitution. Therefore,the mechanism of the skewed X-chromosomal inactivation observed in WAS carriers may be related to a migration defect of WASP-deficient HSCs.
View Publication