Ayasoufi K et al. (APR 2016)
Journal of Immunology 196 7 3180--90
CD4 T Cell Help via B Cells Is Required for Lymphopenia-Induced CD8 T Cell Proliferation.
Ab-mediated lymphoablation is commonly used in solid organ and hematopoietic cell transplantation. However,these strategies fail to control pathogenic memory T cells efficiently and to improve long-term transplant outcomes significantly. Understanding the mechanisms of T cell reconstitution is critical for enhancing the efficacy of Ab-mediated depletion in sensitized recipients. Using a murine analog of anti-thymocyte globulin (mATG) in a mouse model of cardiac transplantation,we previously showed that peritransplant lymphocyte depletion induces rapid memory T cell proliferation and only modestly prolongs allograft survival. We now report that T cell repertoire following depletion is dominated by memory CD4 T cells. Additional depletion of these residual CD4 T cells severely impairs the recovery of memory CD8 T cells after mATG treatment. The CD4 T cell help during CD8 T cell recovery depends on the presence of B cells expressing CD40 and intact CD40/CD154 interactions. The requirement for CD4 T cell help is not limited to the use of mATG in heart allograft recipients,and it is observed in nontransplanted mice and after CD8 T cell depletion with mAb instead of mATG. Most importantly,limiting helper signals increases the efficacy of mATG in controlling memory T cell expansion and significantly extends heart allograft survival in sensitized recipients. Our findings uncover the novel role for helper memory CD4 T cells during homeostatic CD8 T cell proliferation and open new avenues for optimizing lymphoablative therapies in allosensitized patients.
View Publication
产品类型:
产品号#:
19851
19851RF
产品名:
EasySep™小鼠T细胞分选试剂盒
RoboSep™ 小鼠T细胞分选试剂盒
Kennah E et al. (MAY 2009)
Blood 113 19 4646--55
Identification of tyrosine kinase, HCK, and tumor suppressor, BIN1, as potential mediators of AHI-1 oncogene in primary and transformed CTCL cells.
AHI-1 is an oncogene often targeted by provirus insertional mutagenesis in murine leukemias and lymphomas. Aberrant expression of human AHI-1 occurs in cutaneous T-cell lymphoma (CTCL) cells and in CD4(+)CD7(-) Sezary cells from patients with Sezary syndrome. Stable knockdown of AHI-1 using retroviral-mediated RNA interference in CTCL cells inhibits their transforming activity in vitro and in vivo. To identify genes involved in AHI-1-mediated transformation,microarray analysis was performed to identify differentially expressed genes in AHI-1-suppressed CTCL cells. Fifteen up-regulated and 6 down-regulated genes were identified and confirmed by quantitative reverse transcription-polymerase chain reaction. Seven were further confirmed in a microarray analysis of CD4(+)CD7(-) Sezary cells from Sezary syndrome patients. HCK and BIN1 emerged as new candidate cooperative genes,with differential protein expression,which correlates with observed transcript changes. Interestingly,changes in HCK phosphorylation and biologic response to its inhibitor,dasatinib,were observed in AHI-1-suppressed or -overexpressed cells. The tumor suppressor BIN1 physically interacts with MYC in CTCL cells,which also exhibit differential MYC protein expression. In addition,aberrant expression of alternative splicing forms of BIN1 was observed in primary and transformed CTCL cells. These findings indicate that HCK and BIN1 may play critical roles in AHI-1-mediated leukemic transformation of human CTCL cells.
View Publication
产品类型:
产品号#:
15021
15061
产品名:
RosetteSep™人T细胞富集抗体混合物
RosetteSep™人T细胞富集抗体混合物
Shinkuma S et al. (MAY 2016)
Proceedings of the National Academy of Sciences of the United States of America 113 20 5676--5681
Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa.
Genome editing with engineered site-specific endonucleases involves nonhomologous end-joining,leading to reading frame disruption. The approach is applicable to dominant negative disorders,which can be treated simply by knocking out the mutant allele,while leaving the normal allele intact. We applied this strategy to dominant dystrophic epidermolysis bullosa (DDEB),which is caused by a dominant negative mutation in the COL7A1 gene encoding type VII collagen (COL7). We performed genome editing with TALENs and CRISPR/Cas9 targeting the mutation,c.80688084delinsGA. We then cotransfected Cas9 and guide RNA expression vectors expressed with GFP and DsRed,respectively,into induced pluripotent stem cells (iPSCs) generated from DDEB fibroblasts. After sorting,90% of the iPSCs were edited,and we selected four gene-edited iPSC lines for further study. These iPSCs were differentiated into keratinocytes and fibroblasts secreting COL7. RT-PCR and Western blot analyses revealed gene-edited COL7 with frameshift mutations degraded at the protein level. In addition,we confirmed that the gene-edited truncated COL7 could neither associate with normal COL7 nor undergo triple helix formation. Our data establish the feasibility of mutation site-specific genome editing in dominant negative disorders.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
N. Camviel et al. (nov 2022)
Journal for immunotherapy of cancer 10 11
Both APRIL and antibody-fragment-based CAR T cells for myeloma induce BCMA downmodulation by trogocytosis and internalization.
BACKGROUND Chimeric antigen receptor (CAR) T cell therapy targeting B cell maturation antigen (BCMA) on multiple myeloma (MM) produces fast but not long-lasting responses. Reasons for treatment failure are poorly understood. CARs simultaneously targeting two antigens may represent an alternative. Here,we (1) designed and characterized novel A proliferation inducing ligand (APRIL) based dual-antigen targeting CARs,and (2) investigated mechanisms of resistance to CAR T cells with three different BCMA-binding moieties (APRIL,single-chain-variable-fragment,heavy-chain-only). METHODS Three new APRIL-CARs were designed and characterized. Human APRIL-CAR T cells were evaluated for their cytotoxic function in vitro and in vivo,for their polyfunctionality,immune synapse formation,memory,exhaustion phenotype and tonic signaling activity. To investigate resistance mechanisms,we analyzed BCMA levels and cellular localization and quantified CAR T cell-target cell interactions by live microscopy. Impact on pathway activation and tumor cell proliferation was assessed in vitro and in vivo. RESULTS APRIL-CAR T cells in a trimeric ligand binding conformation conferred fast but not sustained antitumor responses in vivo in mouse xenograft models. In vitro trimer-BB$\zeta$ CAR T cells were more polyfunctional and formed stronger immune synapses than monomer-BB$\zeta$ CAR T cells. After CAR T cell-myeloma cell contact,BCMA was rapidly downmodulated on target cells with all evaluated binding moieties. CAR T cells acquired BCMA by trogocytosis,and BCMA on MM cells was rapidly internalized. Since BCMA can be re-expressed during progression and persisting CAR T cells may not protect patients from relapse,we investigated whether non-functional CAR T cells play a role in tumor progression. While CAR T cell-MM cell interactions activated BCMA pathway,we did not find enhanced tumor growth in vitro or in vivo. CONCLUSION Antitumor responses with APRIL-CAR T cells were fast but not sustained. Rapid BCMA downmodulation occurred independently of whether an APRIL or antibody-based binding moiety was used. BCMA internalization mostly contributed to this effect,but trogocytosis by CAR T cells was also observed. Our study sheds light on the mechanisms underlying CAR T cell failure in MM when targeting BCMA and can inform the development of improved treatment strategies.
View Publication
产品类型:
产品号#:
07801
17849
产品名:
EasySep™人CD271正选试剂盒 II
Foley JF et al. (APR 2005)
Journal of immunology (Baltimore,Md. : 1950) 174 8 4892--900
Roles for CXC chemokine ligands 10 and 11 in recruiting CD4+ T cells to HIV-1-infected monocyte-derived macrophages, dendritic cells, and lymph nodes.
We investigated roles for chemoattractants in dissemination of HIV-1 by examining the induction of T cell-active chemokines in HIV-1-infected human monocyte-derived macrophages and dendritic cells. Of the 12 chemokines analyzed,mRNAs for two,CXCL10 and CXCL11,ligands for the chemokine receptor CXCR3,were up-regulated in both cell types upon infection by HIV-1. Induction of these chemokine genes in infected cultures was dependent on both viral entry and reverse transcriptase activity,but not on the HIV-1 envelope glycoprotein. Conditioned medium from infected cells was chemotactic for freshly isolated human CD4+ T cells,and chemotaxis was abolished by pretreatment with an Ab against CXCR3. A lymph node from an HIV-1-infected individual expressed CXCL10 and CXCL11 mRNAs in the paracortex,including venules,as detected by in situ hybridization,whereas neither mRNA was detected after highly active antiretroviral therapy. Because CCR5 on CD4+ T cells is found predominantly on cells that also express CXCR3,these data implicate CXCL10 and CXCL11 in the recruitment of susceptible T cells to HIV-1-infected lymph nodes,macrophages,and dendritic cells. This recruitment might enhance the sequestration of T cells in infected lymphoid organs and the spread of infection between cells,contributing to the immunopathology of AIDS.
View Publication
产品类型:
产品号#:
15022
15062
产品名:
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD4+ T细胞富集抗体混合物
Milush JM et al. (NOV 2009)
Blood 114 23 4823--31
Functionally distinct subsets of human NK cells and monocyte/DC-like cells identified by coexpression of CD56, CD7, and CD4.
The lack of natural killer (NK) cell-specific markers,as well as the overlap among several common surface antigens and functional properties,has obscured the delineation between NK cells and dendritic cells. Here,novel subsets of peripheral blood CD3/14/19(neg) NK cells and monocyte/dendritic cell (DC)-like cells were identified on the basis of CD7 and CD4 expression. Coexpression of CD7 and CD56 differentiates NK cells from CD56+ monocyte/DC-like cells,which lack CD7. In contrast to CD7+CD56+ NK cells,CD7(neg)CD56+ cells lack expression of NK cell-associated markers,but share commonalities in their expression of various monocyte/DC-associated markers. Using CD7,we observed approximately 60% of CD4+CD56+ cells were CD7(neg) cells,indicating the actual frequency of activated CD4+ NK cells is much lower in the blood than previously recognized. Functionally,only CD7+ NK cells secrete gamma interferon (IFNgamma) and degranulate after interleukin-12 (IL-12) plus IL-18 or K562 target cell stimulation. Furthermore,using CD7 to separate CD56+ NK cells and CD56+ myeloid cells,we demonstrate that unlike resting CD7+CD56+ NK cells,the CD7(neg)CD56+ myeloid cells stimulate a potent allogeneic response. Our data indicate that CD7 and CD56 coexpression discriminates NK cells from CD7(neg)CD56+ monocyte/DC-like cells,thereby improving our ability to study the intricacies of NK-cell subset phenotypes and functions in vivo.
View Publication
产品类型:
产品号#:
18051
18051RF
19051
19051RF
产品名:
EasySep™人T细胞富集试剂盒
RoboSep™ 人T细胞富集试剂盒含滤芯吸头
Hartung O et al. (AUG 2010)
Current protocols in stem cell biology Chapter 1 Unit 1C.10
Clump passaging and expansion of human embryonic and induced pluripotent stem cells on mouse embryonic fibroblast feeder cells.
The ability of human embryonic stem cells (hESCs) to differentiate into essentially all somatic cell types has made them a valuable tool for studying human development and has positioned them for broad applications in toxicology,regenerative medicine,and drug discovery. This unit describes a protocol for the large-scale expansion and maintenance of hESCs in vitro. hESC cultures must maintain a balance between the cellular states of pluripotency and differentiation; thus,researchers must use care when growing these technically demanding cells. The culture system is based largely on the use of a proprietary serum-replacement product and basic fibroblast growth factor (bFGF),with mouse embryonic fibroblasts as a feeder layer. These conditions provide the basis for relatively inexpensive maintenance and expansion of hESCs,as well as their engineered counterparts,human induced pluripotent stem cells (hiPSCs).
View Publication
LNGFR+THY-1+ human pluripotent stem cell-derived neural crest-like cells have the potential to develop into mesenchymal stem cells
Mesenchymal stem cells (MSCs) are defined as non-hematopoietic,plastic-adherent,self-renewing cells that are capable of tri-lineage differentiation into bone,cartilage or fat in vitro. Thus,MSCs are promising candidates for cell-based medicine. However,classifications of MSCs have been defined retrospectively; moreover,this conventional criterion may be inaccurate due to contamination with other hematopoietic lineage cells. Human MSCs can be enriched by selection for LNGFR and THY-1,and this population may be analogous to murine PDGFR??+Sca-1+ cells,which are developmentally derived from neural crest cells (NCCs). Murine NCCs were labeled by fluorescence,which provided definitive proof of neural crest lineage,however,technical considerations prevent the use of a similar approach to determine the origin of human LNGFR+THY-1+ MSCs. To further clarify the origin of human MSCs,human embryonic stem cells (ESCs) and human induced pluripotent stem cells (iPSCs) were used in this study. Under culture conditions required for the induction of neural crest cells,human ESCs and iPSCs-derived cells highly expressed LNGFR and THY-1. These LNGFR+THY-1+ neural crest-like cells,designated as LT-NCLCs,showed a strong potential to differentiate into both mesenchymal and neural crest lineages. LT-NCLCs proliferated to form colonies and actively migrated in response to serum concentration. Furthermore,we transplanted LT-NCLCs into chick embryos,and traced their potential for survival,migration and differentiation in the host environment. These results suggest that LNGFR+THY-1+ cells identified following NCLC induction from ESCs/iPSCs shared similar potentials with multipotent MSCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Poggi A et al. (MAR 2005)
Journal of immunology (Baltimore,Md. : 1950) 174 5 2653--60
Tumor-induced apoptosis of human IL-2-activated NK cells: role of natural cytotoxicity receptors.
We provide evidence that tumor cells can induce apoptosis of NK cells by engaging the natural cytotoxicity receptors (NCR) NKp30,NKp44,and NKp46. Indeed,the binding between NCR on NK cells and their putative ligands on tumor target cells led to NK cell apoptosis,and this event was abolished by blocking NCR/NCR-ligand interaction by anti-NCR-specific mAbs. The engagement of NCR induced up-regulation of Fas ligand (FasL) mRNA,FasL protein synthesis,and release. In turn,FasL interacting with Fas at NK cell surface causes NK cell suicide,as apoptosis of NK cells was inhibited by blocking FasL/Fas interaction with specific mAbs. Interestingly,NK cell apoptosis,but not killing of tumor target cells,is inhibited by cyclosporin A,suggesting that apoptosis and cytolysis are regulated by different biochemical pathways. These findings indicate that NCR are not only triggering molecules essential for antitumor activity,but also surface receptors involved in NK cell suicide.
View Publication
产品类型:
产品号#:
15025
15065
产品名:
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
Wright JF et al. (MAY 2007)
The Journal of biological chemistry 282 18 13447--55
Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells.
IL-17F and IL-17A are members of the IL-17 pro-inflammatory cytokine family. IL-17A has been implicated in the pathogenesis of autoimmune diseases. IL-17F is a disulfide-linked dimer that contains a cysteine-knot motif. We hypothesized that IL-17F and IL-17A could form a heterodimer due to their sequence homology and overlapping pattern of expression. We evaluated the structure of recombinant IL-17F and IL-17A proteins,as well as that of natural IL-17F and IL-17A derived from activated human CD4+ T cells,by enzyme-linked immunosorbent assay,immunoprecipitation followed by Western blotting,and mass spectrometry. We find that both IL-17F and IL-17A can form both homodimeric and heterodimeric proteins when expressed in a recombinant system,and that all forms of the recombinant proteins have in vitro functional activity. Furthermore,we find that in addition to the homodimers of IL-17F and IL-17A,activated human CD4+ T cells also produce the IL-17F/IL-17A heterodimer. These data suggest that the IL-17F/IL-17A heterodimer may contribute to the T cell-mediated immune responses.
View Publication
产品类型:
产品号#:
15022
15062
产品名:
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD4+ T细胞富集抗体混合物
Levina V et al. (JAN 2008)
PloS one 3 8 e3077
Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties.
BACKGROUND: Cancer stem cells (CSCs) are thought to be responsible for tumor regeneration after chemotherapy,although direct confirmation of this remains forthcoming. We therefore investigated whether drug treatment could enrich and maintain CSCs and whether the high tumorogenic and metastatic abilities of CSCs were based on their marked ability to produce growth and angiogenic factors and express their cognate receptors to stimulate tumor cell proliferation and stroma formation. METHODOLOGY/FINDINGS: Treatment of lung tumor cells with doxorubicin,cisplatin,or etoposide resulted in the selection of drug surviving cells (DSCs). These cells expressed CD133,CD117,SSEA-3,TRA1-81,Oct-4,and nuclear beta-catenin and lost expression of the differentiation markers cytokeratins 8/18 (CK 8/18). DSCs were able to grow as tumor spheres,maintain self-renewal capacity,and differentiate. Differentiated progenitors lost expression of CD133,gained CK 8/18 and acquired drug sensitivity. In the presence of drugs,differentiation of DSCs was abrogated allowing propagation of cells with CSC-like characteristics. Lung DSCs demonstrated high tumorogenic and metastatic potential following inoculation into SCID mice,which supported their classification as CSCs. Luminex analysis of human and murine cytokines in sonicated lysates of parental- and CSC-derived tumors revealed that CSC-derived tumors contained two- to three-fold higher levels of human angiogenic and growth factors (VEGF,bFGF,IL-6,IL-8,HGF,PDGF-BB,G-CSF,and SCGF-beta). CSCs also showed elevated levels of expression of human VEGFR2,FGFR2,CXCR1,2 and 4 receptors. Moreover,human CSCs growing in SCID mice stimulated murine stroma to produce elevated levels of angiogenic and growth factors. CONCLUSIONS/SIGNIFICANCE: These findings suggest that chemotherapy can lead to propagation of CSCs and prevention of their differentiation. The high tumorigenic and metastatic potentials of CSCs are associated with efficient cytokine network production that may represent a target for increased efficacy of cancer therapy.
View Publication