Suljagic M et al. (DEC 2010)
Blood 116 23 4894--905
The Syk inhibitor fostamatinib disodium (R788) inhibits tumor growth in the Eμ- TCL1 transgenic mouse model of CLL by blocking antigen-dependent B-cell receptor signaling.
Inhibition of antigen-dependent B-cell receptor (BCR) signaling is considered a promising therapeutic approach in chronic lymphocytic leukemia (CLL),but experimental in vivo evidence to support this view is still lacking. We have now investigated whether inhibition of BCR signaling with the selective Syk inhibitor fostamatinib disodium (R788) will affect the growth of the leukemias that develop in the Eμ-TCL1 transgenic mouse model of CLL. Similarly to human CLL,these leukemias express stereotyped BCRs that react with autoantigens exposed on the surface of senescent or apoptotic cells,suggesting that they are antigen driven. We show that R788 effectively inhibits BCR signaling in vivo,resulting in reduced proliferation and survival of the malignant B cells and significantly prolonged survival of the treated animals. The growth-inhibitory effect of R788 occurs despite the relatively modest cytotoxic effect in vitro and is independent of basal Syk activity,suggesting that R788 functions primarily by inhibiting antigen-dependent BCR signals. Importantly,the effect of R788 was found to be selective for the malignant clones,as no disturbance in the production of normal B lymphocytes was observed. Collectively,these data provide further rationale for clinical trials with R788 in CLL and establish the BCR-signaling pathway as an important therapeutic target in this disease.
View Publication
产品类型:
产品号#:
18556
18556RF
18754
18754RF
19754
19754RF
产品名:
McCune K et al. (NOV 2010)
Oncology reports 24 5 1233--9
Loss of ERα and FOXA1 expression in a progression model of luminal type breast cancer: insights from PyMT transgenic mouse model.
The classification of breast cancer into multiple molecular subtypes has necessitated the need for biomarkers that can assess tumor progression and the effects of chemopreventive agents on specific breast cancer subtypes. The goal of this study was to identify biomarkers whose expression are altered along with estrogen receptor α (ERα) in the polyoma middle-T antigen (PyMT) transgenic model of breast cancer and to investigate the chemopreventive activity of phenethyl isothiocyanate (PEITC). The diet of PyMT female mice was fortified with PEITC (8 mmol/kg) and the mammary streak and/or gross tumors and metastases in lungs were subjected to immunohistochemical analyses for ERα,FOXA1,and GATA-3. FOXA1 is associated with luminal type A cancers,while GATA-3 is a marker of luminal progenitor cell differentiation. In both control and PEITC-treated groups,there was a progressive loss of ERα and FOXA1 but persistence of GATA-3 expression indicating that the tumors retain luminal phenotype. Overall,the PyMT induced tumors exhibited the entire gamut of phenotypes from ERα+/FOXA1+/GATA-3+ tumors in the early stage to ERα±/FOXA1-/GATA-3+ in the late stage. Thus,PyMT model serves as an excellent model for studying progression of luminal subtype tumors. PEITC treated animals had multiple small tumors,indicating delay in tumor progression. Although these tumors were histologically similar to those in controls,there was a lower expression of these biomarkers in normal luminal cells indicating delay in tumor initiation. In in vitro studies,PEITC depleted AldeFluor-positive putative stem/progenitor cells,which may partly be responsible for the delay in tumor initiation.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Pineda JR et al. (APR 2013)
EMBO Molecular Medicine 5 4 548--562
Vascular-derived TGF-β increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain
Neurogenesis decreases during aging and following cranial radiotherapy,causing a progressive cognitive decline that is currently untreatable. However,functional neural stem cells remained present in the subventricular zone of high dose-irradiated and aged mouse brains. We therefore investigated whether alterations in the neurogenic niches are perhaps responsible for the neurogenesis decline. This hypothesis was supported by the absence of proliferation of neural stem cells that were engrafted into the vascular niches of irradiated host brains. Moreover,we observed a marked increase in TGF-β1 production by endothelial cells in the stem cell niche in both middle-aged and irradiated mice. In co-cultures,irradiated brain endothelial cells induced the apoptosis of neural stem/progenitor cells via TGF-β/Smad3 signalling. Strikingly,the blockade of TGF-β signalling in vivo using a neutralizing antibody or the selective inhibitor SB-505124 significantly improved neurogenesis in aged and irradiated mice,prevented apoptosis and increased the proliferation of neural stem/progenitor cells. These findings suggest that anti-TGF-β-based therapy may be used for future interventions to prevent neurogenic collapse following radiotherapy or during aging.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠&大鼠)
NeuroCult™ 扩增添加物 (小鼠&大鼠)
NeuroCult™ 扩增试剂盒 (小鼠&大鼠)
Ran FA et al. (SEP 2013)
Cell 154 6 1380--1389
Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity
Targeted genome editing technologies have enabled a broad range of research and medical applications. The Cas9 nuclease from the microbial CRISPR-Cas system is targeted to specific genomic loci by a 20 nt guide sequence,which can tolerate certain mismatches to the DNA target and thereby promote undesired off-target mutagenesis. Here,we describe an approach that combines a Cas9 nickase mutant with paired guide RNAs to introduce targeted double-strand breaks. Because individual nicks in the genome are repaired with high fidelity,simultaneous nicking via appropriately offset guide RNAs is required for double-stranded breaks and extends the number of specifically recognized bases for target cleavage. We demonstrate that using paired nicking can reduce off-target activity by 50- to 1,500-fold in cell lines and to facilitate gene knockout in mouse zygotes without sacrificing on-target cleavage efficiency. This versatile strategy enables a wide variety of genome editing applications that require high specificity. textcopyright 2013 Elsevier Inc.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Chronopoulou E et al. ( 2014)
1131 47--70
Hybridoma technology for the generation of rodent mAbs via classical fusion
Monoclonal antibodies (mAbs) have proven to be instrumental in the advancement of research,diagnostic,industrial vaccine,and therapeutic applications. The use of mAbs in laboratory protocols has been growing in an exponential fashion for the last four decades. Described herein are methods for the development of highly specific mAbs through traditional hybridoma fusion. For ultimate success,a series of simultaneously initiated protocols are to be undertaken with careful attention to cell health of both the myeloma fusion partner and immune splenocytes. Coordination and attention to detail will enable a researcher with basic tissue culture skills to generate mAbs from immunized rodents to a variety of antigens (including proteins,carbohydrates,DNA,and haptens) (see Note 1). Furthermore,in vivo and in vitro methods used for antigen sensitization of splenocytes prior to somatic fusion are described herein.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
产品名:
ClonaCell™-HY 杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY PEG (融合)
Mendoza N et al. ( 2014)
1181 97--108
Shrink-induced biomimetic wrinkled substrates for functional cardiac cell alignment and culture.
The anisotropic alignment of cardiomyocytes in native myocardium tissue is a functional feature that is absent in traditional in vitro cardiac cell culture. Microenvironmental factors cue structural organization of the myocardium,which promotes the mechanical contractile properties and electrophysiological patterns seen in mature cardiomyocytes. Current nano- and microfabrication techniques,such as photolithography,generate simplified cell culture topographies that are not truly representative of the multifaceted and multi-scale fibrils of the cardiac extracellular matrix. In addition,such technologies are costly and require a clean room for fabrication. This chapter offers an easy,fast,robust,and inexpensive fabrication of biomimetic multi-scale wrinkled surfaces through the process of plasma treating and shrinking prestressed thermoplastic. Additionally,this chapter includes techniques for culturing stem cells and their cardiac derivatives on these substrates. Importantly,this wrinkled cell culture platform is compatible with both fluorescence and bright-field imaging; real-time physiological monitoring of CM action potential propagation and contraction properties can elucidate cardiotoxicity drug effects.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Schrenk-Siemens K et al. (JAN 2014)
Nature neuroscience 18 1 10--16
PIEZO2 is required for mechanotransduction in human stem cell-derived touch receptors.
Human sensory neurons are inaccessible for functional examination,and thus little is known about the mechanisms mediating touch sensation in humans. Here we demonstrate that the mechanosensitivity of human embryonic stem (hES) cell-derived touch receptors depends on PIEZO2. To recapitulate sensory neuron development in vitro,we established a multistep differentiation protocol and generated sensory neurons via the intermediate production of neural crest cells derived from hES cells or human induced pluripotent stem (hiPS) cells. The generated neurons express a distinct set of touch receptor-specific genes and convert mechanical stimuli into electrical signals,their most salient characteristic in vivo. Strikingly,mechanosensitivity is lost after CRISPR/Cas9-mediated PIEZO2 gene deletion. Our work establishes a model system that resembles human touch receptors,which may facilitate mechanistic analysis of other sensory subtypes and provide insight into developmental programs underlying sensory neuron diversity.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
M. Ventre et al. (jul 2019)
Journal of biomedical materials research. Part A
Biochemical and biophysical stimuli of stem cell niches finely regulate the self-renewal/differentiation equilibrium. Replicating this in vitro is technically challenging,making the control of stem cell functions difficult. Cell derived matrices capture certain aspect of niches that influence fate decisions. Here,aligned fibrous matrices synthesized by MC3T3 cells were produced and the role of matrix orientation and stiffness on the maintenance of stem cell characteristics and adipo- or osteo-genic differentiation of murine mesenchymal stem cells (mMSCs) was investigated. Decellularized matrices promoted mMSC proliferation. Fibrillar alignment and matrix stiffness work in concert in defining cell fate. Soft matrices preserve stemness,whereas stiff ones,in presence of biochemical supplements,promptly induce differentiation. Matrix alignment impacts the homogeneity of the cell population,that is,soft aligned matrices ameliorate the spontaneous adipogenic differentiation,whereas stiff aligned matrices reduce cross-differentiation. We infer that mechanical signaling is a dominant factor in mMSC fate decision and the matrix alignment contributes to produce a more homogeneous environment,which results in a uniform response of cells to biophysical environment. Matrix thus produced can be obtained in vitro in a facile and consistent manner and can be used for homogeneous stem cell amplification or for mechanotransduction-related studies.
View Publication