HiHo-AID2: boosting homozygous knock-in efficiency enables robust generation of human auxin-inducible degron cells
Recent developments in auxin-inducible degron (AID) technology have increased its popularity for chemogenetic control of proteolysis. However,generation of human AID cell lines is challenging,especially in human embryonic stem cells (hESCs). Here,we develop HiHo-AID2,a streamlined procedure for rapid,one-step generation of human cancer and hESC lines with high homozygous degron-tagging efficiency based on an optimized AID2 system and homology-directed repair enhancers. We demonstrate its application for rapid and inducible functional inactivation of twelve endogenous target proteins in five cell lines,including targets with diverse expression levels and functions in hESCs and cells differentiated from hESCs.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13059-024-03187-w.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
(May 2025)
Communications Biology 8
Loss of UBE3A impacts both neuronal and non-neuronal cells in human cerebral organoids
Angelman syndrome is a neurodevelopmental disorder caused by (epi)genetic lesions of maternal UBE3A. Research has focused largely on the role of UBE3A in neurons due to its imprinting in that cell type. Yet,evidence suggests there may be broader neurodevelopmental impacts of UBE3A dysregulation. Human cerebral organoids might reveal these understudied aspects of UBE3A as they recapitulate diverse cell types of the developing human brain. In this study,scRNAseq on organoids reveals the effects of UBE3A disruption on cell type-specific compositions and transcriptomic alterations. In the absence of UBE3A,progenitor proliferation and structures are disrupted while organoid composition shifts away from proliferative cell types. We observe impacts on non-neuronal cells,including choroid plexus enrichment. Furthermore,EMX1+ cortical progenitors are negatively impacted; potentially disrupting corticogenesis and delaying excitatory neuron maturation. This work reveals impacts of UBE3A on understudied cell types and related neurodevelopmental processes and elucidates potential therapeutic targets. Human cerebral organoids exhibit compositional and transcriptomic alterations in both neuronal and non-neuronal cells in the absence of UBE3A.
View Publication
产品类型:
产品号#:
100-0276
100-1130
05990
产品名:
mTeSR™ Plus
mTeSR™ Plus
TeSR™-E8™
(May 2024)
Cell reports 43 5
Dissecting gene activation and chromatin remodeling dynamics in single human cells undergoing reprogramming
SUMMARY During cell fate transitions,cells remodel their transcriptome,chromatin,and epigenome; however,it has been difficult to determine the temporal dynamics and cause-effect relationship between these changes at the single-cell level. Here,we employ the heterokaryon-mediated reprogramming system as a single-cell model to dissect key temporal events during early stages of pluripotency conversion using super-resolution imaging. We reveal that,following heterokaryon formation,the somatic nucleus undergoes global chromatin decompaction and removal of repressive histone modifications H3K9me3 and H3K27me3 without acquisition of active modifications H3K4me3 and H3K9ac. The pluripotency gene OCT4 (POU5F1) shows nascent and mature RNA transcription within the first 24 h after cell fusion without requiring an initial open chromatin configuration at its locus. NANOG,conversely,has significant nascent RNA transcription only at 48 h after cell fusion but,strikingly,exhibits genomic reopening early on. These findings suggest that the temporal relationship between chromatin compaction and gene activation during cellular reprogramming is gene context dependent. In brief Martinez-Sarmiento et al. demonstrate that,during heterokaryon reprogramming,global chromatin decondensation and loss of repressive histone modifications occur at late stages after cell fusion. Activation of OCT4 precedes global chromatin decompaction and does not require the opening of its local genomic region. Conversely,NANOG activation occurs after OCT4 activation,and the NANOG locus undergoes opening prior to its transcriptional activation. Graphical Abstract
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
B. C. Heng et al. (oct 2007)
Bioscience reports 27 5-Apr 257--64
Caspase inhibitor Z-VAD-FMK enhances the freeze-thaw survival rate of human embryonic stem cells.
Previous study demonstrated that the low survival of human embryonic stem cells (hESC) under conventional slow-cooling cryopreservation protocols is predominantly due to apoptosis rather than cellular necrosis. Hence,this study investigated whether a synthetic broad-spectrum irreversible inhibitor of caspase enzymes,Z-VAD-FMK can be used to enhance the post-thaw survival rate of hESC. About 100 mM Z-VAD-FMK was supplemented into either the freezing solution,the post-thaw culture media or both. Intact and adherent hESC colonies were cryopreserved so as to enable subsequent quantitation of the post-thaw cell survival rate through the MTT assay,which can only be performed with adherent cells. Exposure to 100 mM Z-VAD-FMK in the freezing solution alone did not significantly enhance the post-thaw survival rate (10.2{\%} vs. 9.9{\%},p {\textgreater} 0.05). However,when 100 mM Z-VAD-FMK was added to the post-thaw culture media,there was a significant enhancement in the survival rate from 9.9{\%} to 14.4{\%} (p {\textless} 0.05),which was further increased to 18.7{\%} when Z-VAD-FMK was also added to the freezing solution as well (p {\textless} 0.01). Spontaneous differentiation of hESC after cryopreservation was assessed by morphological observations under bright-field microscopy,and by immunocytochemical staining for the pluripotency markers SSEA-3 and TRA-1-81. The results demonstrated that exposure to Z-VAD-FMK did not significantly enhance the spontaneous differentiation of hESC within post-thaw culture.
View Publication
产品类型:
产品号#:
100-0534
100-0535
产品名:
Z-VAD-FMK
Z-VAD-FMK
Nika K et al. (MAR 2006)
Molecular and cellular biology 26 5 1806--16
Lipid raft targeting of hematopoietic protein tyrosine phosphatase by protein kinase C theta-mediated phosphorylation.
Protein kinase C theta (PKC theta) is unique among PKC isozymes in its translocation to the center of the immune synapse in T cells and its unique downstream signaling. Here we show that the hematopoietic protein tyrosine phosphatase (HePTP) also accumulates in the immune synapse in a PKC theta-dependent manner upon antigen recognition by T cells and is phosphorylated by PKC theta at Ser-225,which is required for lipid raft translocation. Immune synapse translocation was completely absent in antigen-specific T cells from PKC theta-/- mice. In intact T cells,HePTP-S225A enhanced T-cell receptor (TCR)-induced NFAT/AP-1 transactivation,while the acidic substitution mutant was as efficient as wild-type HePTP. We conclude that HePTP is phosphorylated in the immune synapse by PKC theta and thereby targeted to lipid rafts to temper TCR signaling. This represents a novel mechanism for the active immune synapse recruitment and activation of a phosphatase in TCR signaling.
View Publication
Tominaga S et al. (JAN 2005)
Biochemical and biophysical research communications 326 2 499--504
Negative regulation of adipogenesis from human mesenchymal stem cells by Jun N-terminal kinase.
Human mesenchymal stem cells (hMSCs) are capable of differentiating into several cell types including adipocytes,osteoblasts,and chondrocytes,under appropriate culture conditions. We found that SP600125,an inhibitor of Jun N-terminal kinase (JNK),promoted adipogenesis whereas it repressed osteogenesis from hMSCs. SP600125 increased the expression of adipogenic transcription factors,CCAAT/enhancer-binding proteins alpha and beta as well as peroxisome proliferator-activated receptor gamma2,which suggested that the chemical acted on the early steps of transcriptional regulatory cascade in adipogenesis. A gene reporter assay showed that SP600125 and a dominant negative JNK promoted a transcriptional activity dependent on the cAMP-response element (CRE). Thus,JNK represses adipogenesis from hMSCs probably by,at least in part,inhibiting the transactivating function of CRE-binding protein. Another action of JNK,phosphorylation at Ser(307) of insulin receptor substrate-1,was also predicted to contribute to the repression of adipogenesis.
View Publication
产品类型:
产品号#:
72642
产品名:
SP600125
Cho HH et al. (OCT 2005)
Journal of cellular biochemistry 96 3 533--42
Induction of osteogenic differentiation of human mesenchymal stem cells by histone deacetylase inhibitors.
Valproic acid (VPA) has been used as an anticonvulsant agent for the treatment of epilepsy,as well as a mood stabilizer for the treatment of bipolar disorder,for several decades. The mechanism of action for these effects remains to be elucidated and is most likely multifactorial. Recently,VPA has been reported to inhibit histone deacetylase (HDAC) and HDAC has been reported to play roles in differentiation of mammalian cells. In this study,the effects of HDAC inhibitors on differentiation and proliferation of human adipose tissue-derived stromal cells (hADSC) and bone marrow stromal cells (hBMSC) were determined. VPA increased osteogenic differentiation in a dose dependent manner. The pretreatment of VPA before induction of differentiation also showed stimulatory effects on osteogenic differentiation of hMSC. Trichostatin A (TSA),another HDAC inhibitor,also increased osteogenic differentiation,whereas valpromide (VPM),a structural analog of VPA which does not possess HDAC inhibitory effects,did not show any effect on osteogenic differentiation on hADSC. RT-PCR and Real-time PCR analysis revealed that VPA treatment increased osterix,osteopontin,BMP-2,and Runx2 expression. The addition of noggin inhibited VPA-induced potentiation of osteogenic differentiation. VPA inhibited proliferation of hADSC and hBMSC. Our results suggest that VPA enhance osteogenic differentiation,probably due to inhibition of HDAC,and could be useful for in vivo bone engineering using hMSC.
View Publication
产品类型:
产品号#:
72292
产品名:
Valproic Acid (Sodium Salt)
Vallier L et al. (OCT 2005)
Journal of cell science 118 Pt 19 4495--509
Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells.
Maintenance of pluripotency is crucial to the mammalian embryo's ability to generate the extra-embryonic and embryonic tissues that are needed for intrauterine survival and foetal development. The recent establishment of embryonic stem cells from human blastocysts (hESCs) provides an opportunity to identify the factors supporting pluripotency at early stages of human development. Using this in vitro model,we have recently shown that Nodal can block neuronal differentiation,suggesting that TGFbeta family members are involved in cell fate decisions of hESCs,including preservation of their pluripotency. Here,we report that Activin/Nodal signalling through Smad2/3 activation is necessary to maintain the pluripotent status of hESCs. Inhibition of Activin/Nodal signalling by follistatin and by overexpression of Lefty or Cerberus-Short,or by the Activin receptor inhibitor SB431542,precipitates hESC differentiation. Nevertheless,neither Nodal nor Activin is sufficient to sustain long-term hESC growth in a chemically defined medium without serum. Recent studies have shown that FGF2 can also maintain long-term expression of pluripotency markers,and we find that inhibition of the FGF signalling pathway by the tyrosine kinase inhibitor SU5402 causes hESC differentiation. However,this effect of FGF on hESC pluripotency depends on Activin/Nodal signalling,because it is blocked by SB431542. Finally,long-term maintenance of in-vitro pluripotency can be achieved with a combination of Activin or Nodal plus FGF2 in the absence of feeder-cell layers,conditioned medium or Serum Replacer. These findings suggest that the Activin/Nodal pathway maintains pluripotency through mechanism(s) in which FGF acts as a competence factor and therefore provide further evidence of distinct mechanisms for preservation of pluripotency in mouse and human ESCs.
View Publication