Saha K et al. (NOV 2011)
Proceedings of the National Academy of Sciences of the United States of America 108 46 18714--9
Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions
The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here,we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells,as predicted from a numerical model of cell migration,and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further,reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Han YK et al. (JAN 2013)
Biochemical and biophysical research communications 430 4 1329--1333
A possible usage of a CDK4 inhibitor for breast cancer stem cell-targeted therapy.
Cancer stem cells (CSCs) are one of the main reasons behind cancer recurrence due to their resistance to conventional anti-cancer therapies. Thus,many efforts are being devoted to developing CSC-targeted therapies to overcome the resistance of CSCs to conventional anti-cancer therapies and decrease cancer recurrence. Differentiation therapy is one potential approach to achieve CSC-targeted therapies. This method involves inducing immature cancer cells with stem cell characteristics into more mature or differentiated cancer cells. In this study,we found that a CDK4 inhibitor sensitized MDA-MB-231 cells but not MCF7 cells to irradiation. This difference appeared to be associated with the relative percentage of CSC-population between the two breast cancer cells. The CDK4 inhibitor induced differentiation and reduced the cancer stem cell activity of MDA-MB-231 cells,which are shown by multiple marker or phenotypes of CSCs. Thus,these results suggest that radiosensitization effects may be caused by reducing the CSC-population of MDA-MB-231 through the use of the CDK4 inhibitor. Thus,further investigations into the possible application of the CDK4 inhibitor for CSC-targeted therapy should be performed to enhance the efficacy of radiotherapy for breast cancer.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™人培养基试剂盒
Xing J et al. (MAY 2015)
Scientific Reports 5 November 2014 10038
A method for human teratogen detection by geometrically confined cell differentiation and migration
Unintended exposure to teratogenic compounds can lead to various birth defects; however current animal-based testing is limited by time,cost and high inter-species variability. Here,we developed a human-relevant in vitro model,which recapitulated two cellular events characteristic of embryogenesis,to identify potentially teratogenic compounds. We spatially directed mesoendoderm differentiation,epithelial-mesenchymal transition and the ensuing cell migration in micropatterned human pluripotent stem cell (hPSC) colonies to collectively form an annular mesoendoderm pattern. Teratogens could disrupt the two cellular processes to alter the morphology of the mesoendoderm pattern. Image processing and statistical algorithms were developed to quantify and classify the compounds' teratogenic potential. We not only could measure dose-dependent effects but also correctly classify species-specific drug (Thalidomide) and false negative drug (D-penicillamine) in the conventional mouse embryonic stem cell test. This model offers a scalable screening platform to mitigate the risks of teratogen exposures in human.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07923
85850
85857
85870
85875
05270
05275
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
STEMdiff™ APEL™2 培养基
STEMdiff™ APEL™2 培养基
Zhao Y et al. (JUL 2010)
Nature cell biology 12 7 665--75
Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity.
Autophagy is characterized by the sequestration of bulk cytoplasm,including damaged proteins and organelles,and delivery of the cargo to lysosomes for degradation. Although the autophagic pathway is also linked to tumour suppression activity,the mechanism is not yet clear. Here we report that cytosolic FoxO1,a forkhead O family protein,is a mediator of autophagy. Endogenous FoxO1 was required for autophagy in human cancer cell lines in response to oxidative stress or serum starvation,but this process was independent of the transcriptional activity of FoxO1. In response to stress,FoxO1 was acetylated by dissociation from sirtuin-2 (SIRT2),a NAD(+)-dependent histone deacetylase,and the acetylated FoxO1 bound to Atg7,an E1-like protein,to influence the autophagic process leading to cell death. This FoxO1-modulated cell death is associated with tumour suppressor activity in human colon tumours and a xenograft mouse model. Our finding links the anti-neoplastic activity of FoxO1 and the process of autophagy.
View Publication
产品类型:
产品号#:
73052
73054
产品名:
AGK2
S. Niyongere et al. (JUL 2018)
Leukemia
Heterogeneous expression of cytokines accounts for clinical diversity and refines prognostication in CMML.
Chronic myelomonocytic leukemia (CMML) is a clinically heterogeneous neoplasm in which JAK2 inhibition has demonstrated reductions in inflammatory cytokines and promising clinical activity. We hypothesize that annotation of inflammatory cytokines may uncover mutation-independent cytokine subsets associated with novel CMML prognostic features. A Luminex cytokine profiling assay was utilized to profile cryopreserved peripheral blood plasma from 215 CMML cases from three academic centers,along with center-specific,age-matched plasma controls. Significant differences were observed between CMML patients and healthy controls in 23 out of 45 cytokines including increased cytokine levels in IL-8,IP-10,IL-1RA,TNF-alpha$,IL-6,MCP-1/CCL2,hepatocyte growth factor (HGF),M-CSF,VEGF,IL-4,and IL-2RA. Cytokine associations were identified with clinical and genetic features,and Euclidian cluster analysis identified three distinct cluster groups associated with important clinical and genetic features in CMML. CMML patients with decreased IL-10 expression had a poor overall survival when compared to CMML patients with elevated expression of IL-10 (P = 0.017),even when adjusted for ASXL1 mutation and other prognostic features. Incorporating IL-10 with the Mayo Molecular Model statistically improved the prognostic ability of the model. These established cytokines,such as IL-10,as prognostically relevant and represent the first comprehensive study exploring the clinical implications of the CMML inflammatory state.
View Publication
Evaluation of strategies to modify Anti-SARS-CoV-2 monoclonal antibodies for optimal functionality as therapeutics.
The current global COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a public health crisis with more than 168 million cases reported globally and more than 4.5 million deaths at the time of writing. In addition to the direct impact of the disease,the economic impact has been significant as public health measures to contain or reduce the spread have led to country wide lockdowns resulting in near closure of many sectors of the economy. Antibodies are a principal determinant of the humoral immune response to COVID-19 infections and may have the potential to reduce disease and spread of the virus. The development of monoclonal antibodies (mAbs) represents a therapeutic option that can be produced at large quantity and high quality. In the present study,a mAb combination mixture therapy was investigated for its capability to specifically neutralize SARS-CoV-2. We demonstrate that each of the antibodies bind the spike protein and neutralize the virus,preventing it from infecting cells in an in vitro cell-based assay,including multiple viral variants that are currently circulating in the human population. In addition,we investigated the effects of two different mutations in the Fc portion (YTE and LALA) of the antibody on Fc effector function and the ability to alleviate potential antibody-dependent enhancement of disease. These data demonstrate the potential of a combination of two mAbs that target two different epitopes on the SARS-CoV2 spike protein to provide protection against SARS-CoV-2 infection in humans while extending serum half-life and preventing antibody-dependent enhancement of disease.
View Publication
High-volume, label-free imaging for quantifying single-cell dynamics in induced pluripotent stem cell colonies
To facilitate the characterization of unlabeled induced pluripotent stem cells (iPSCs) during culture and expansion,we developed an AI pipeline for nuclear segmentation and mitosis detection from phase contrast images of individual cells within iPSC colonies. The analysis uses a 2D convolutional neural network (U-Net) plus a 3D U-Net applied on time lapse images to detect and segment nuclei,mitotic events,and daughter nuclei to enable tracking of large numbers of individual cells over long times in culture. The analysis uses fluorescence data to train models for segmenting nuclei in phase contrast images. The use of classical image processing routines to segment fluorescent nuclei precludes the need for manual annotation. We optimize and evaluate the accuracy of automated annotation to assure the reliability of the training. The model is generalizable in that it performs well on different datasets with an average F1 score of 0.94,on cells at different densities,and on cells from different pluripotent cell lines. The method allows us to assess,in a non-invasive manner,rates of mitosis and cell division which serve as indicators of cell state and cell health. We assess these parameters in up to hundreds of thousands of cells in culture for more than 36 hours,at different locations in the colonies,and as a function of excitation light exposure.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
M. E. Williams et al. (May 2025)
BMC Molecular and Cell Biology 26 4
Optimizing mesenchymal stem cell therapy: from isolation to GMP-compliant expansion for clinical application
Mesenchymal stem cells (MSCs) are promising for cell-based therapies targeting a wide range of diseases. However,challenges in translating MSC-based therapies to clinical applications necessitate standardized protocols following Good Manufacturing Practices (GMP) guidelines. This study aimed at developing GMP-complained protocols for FPMSCs isolation and manipulation,necessary for translational research,by (1) optimize culture of MSCs derived from an infrapatellar fat pad (FPMSC) condition through animal-free media comparison and (2) establish feasibility of MSC isolation,manufacturing and storage under GMP-compliance (GMP-FPMSC). FPMSCs from three different patients were isolated following established protocols and the efficacy of two animal component-free media formulations in the culturing media were evaluated. The impact of different media formulations on cell proliferation,purity,and potency of MSCs was evaluated through doubling time,colony forming unit assay,and percentage of MSCs,respectively. Furthermore,the isolation and expansion of GMP-FPMSCs from four additional donors were optimized and characterized at each stage according to GMP requirements. Viability and sterility were checked using Trypan Blue and Bact/Alert,respectively,while purity and identity were confirmed using Endotoxin,Mycoplasma assays,and Flow Cytometry. The study also included stability assessments post-thaw and viability assessment to determine the shelf-life of the final GMP-FPMSC product. Statistical analyses were conducted using one-way ANOVA with Tukey’s Multiple Comparisons. The study demonstrated that FPMSCs exhibited enhanced proliferation rates when cultured in MSC-Brew GMP Medium compared to standard MSC media. Cells cultured in this media showed lower doubling times across passages,indicating increased proliferation. Additionally,higher colony formation in FPMSCs cultured in MSC-Brew GMP Medium were observed,supporting enhanced potency. Data from our GMP validation,including cells from 4 different donors,showed post-thaw GMP-FPMSC maintained stem cell marker expression and all the specifications required for product release,including > 95% viability (> 70% is required) and sterility,even after extended storage (up to 180 days),demonstrating the reproducibility and potential of GMP-FPMSCs for clinical use as well as the robustness of the isolation and storage protocols. The study underscores the feasibility of FPMSCs for clinical uses under GMP conditions and emphasizes the importance of optimized culture protocols to improve cell proliferation and potency in MSC-based therapies. The online version contains supplementary material available at 10.1186/s12860-025-00539-7.
View Publication
产品类型:
产品号#:
05445
产品名:
MesenCult™-ACF Plus培养基
M. Dubau et al. (May 2025)
Journal of Tissue Engineering 16 10
Development of an iPSC-derived immunocompetent skin model for identification of skin sensitizing substances
The development of immunocompetent skin models marks a significant advancement in in vitro methods for detecting skin sensitizers while adhering to the 3R principles,which aim to reduce,refine,and replace animal testing. This study introduces for the first time an advanced immunocompetent skin model constructed entirely from induced pluripotent stem cell (iPSC)-derived cell types,including fibroblasts (iPSC-FB),keratinocytes (iPSC-KC),and fully integrated dendritic cells (iPSC-DC). To evaluate the skin model’s capacity,the model was treated topically with a range of well-characterized skin sensitizers varying in potency. The results indicate that the iPSC-derived immunocompetent skin model successfully replicates the physiological responses of human skin,offering a robust and reliable alternative to animal models for skin sensitization testing,allowing detection of extreme and even weak sensitizers. By addressing critical aspects of immune activation and cytokine signaling,this model provides an ethical,comprehensive tool for regulatory toxicology and dermatological research.
View Publication
产品类型:
产品号#:
05320
100-0956
10986
10987
10988
产品名:
STEMdiff™ 单核细胞试剂盒
ImmunoCult™ XF培养基
ImmunoCult™-ACF树突状细胞培养基
ImmunoCult™-ACF树突状细胞培养基
ImmunoCult™-ACF树突状细胞分化添加物
G. Lee et al. (Nov 2025)
Nature Communications 16
Microengineered patient-derived endometrium-on-a-chip for the evaluation of endometrial receptivity and personalised translational medicine
Endometrial receptivity is a critical determinant of embryo implantation and early pregnancy success; however,current methods for assessing endometrial receptivity remain poorly validated and insufficiently reliable for clinical application. Here,we establish a patient-derived vascularised endometrium-on-a-chip (EoC),successfully replicating the dynamic microenvironment and both temporal and spatial architecture of native endometrial tissue. Using our EoC,we develop a clinically relevant endometrial receptivity scoring system,ERS2,which integrates molecular profiling of established receptivity markers with quantitative analyses of angiogenesis. The ERS2 enables personalised assessment of endometrial health and implantation potential,addressing inter-patient variability often overlooked by conventional techniques. By leveraging our EoC to therapeutic monitoring,we observe progressive restoration of the endometrial microenvironment following platelet-rich-plasma treatments,highlighting the translational utility of our model. This study represents the innovative application of a patient-derived EoC and scoring system to assess receptivity,offering personalised infertility management and advancing targeted therapies in reproductive medicine. Accurate assessment of endometrial receptivity remains a challenge in infertility care. Here,authors present a patient-derived vascularised endometrium-on-a-chip and a scoring system for receptivity evaluation.
View Publication