Du L et al. (MAY 2016)
Journal of applied toxicology : JAT 36 5 659--668
BDE-209 inhibits pluripotent genes expression and induces apoptosis in human embryonic stem cells.
Decabromodiphenyl ether (BDE-209) has been detected in human serum,semen,placenta,cord blood and milk worldwide. However,little is known regarding the potential effects on the early human embryonic development of BDE-209. In this study,human embryonic stem cell lines FY-hES-10 and FY-hES-26 were used to evaluate the potential effects and explore the toxification mechanisms using low-level BDE-209 exposure. Our data showed that BDE-209 exposure (1,10 and 100 nM) reduced the expression of pluripotent genes such as OCT4,SOX2 and NANOG and induced human embryonic stem cells (hESCs) apoptosis. The downregulation of BIRC5/BCL2 and upregulation of BAX were related to apoptosis of hESCs induced by BDE-209 exposure. A mechanism study showed that OCT4 down-regulation accompanied by OCT4 promoter hypermethylation and increasing miR-145/miR-335 levels,OCT4 inhibitors. Moreover,BDE-209 could increase the generation of intracellular reactive oxygen species (ROS) and decrease SOD2 expression. The ROS increase and OCT4 downregulation after BDE-209 exposure could be reversed partly by antioxidant N-acetylcysteine supplement. These findings showed that BDE-209 exposure could decrease pluripotent genes expression via epigenetic regulation and induce apoptosis through ROS generation in human embryonic stem cells in vitro.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Vegas AJ et al. (MAR 2016)
Nature medicine 22 3 306--311
Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice.
The transplantation of glucose-responsive,insulin-producing cells offers the potential for restoring glycemic control in individuals with diabetes. Pancreas transplantation and the infusion of cadaveric islets are currently implemented clinically,but these approaches are limited by the adverse effects of immunosuppressive therapy over the lifetime of the recipient and the limited supply of donor tissue. The latter concern may be addressed by recently described glucose-responsive mature beta cells that are derived from human embryonic stem cells (referred to as SC-$\$),which may represent an unlimited source of human cells for pancreas replacement therapy. Strategies to address the immunosuppression concerns include immunoisolation of insulin-producing cells with porous biomaterials that function as an immune barrier. However,clinical implementation has been challenging because of host immune responses to the implant materials. Here we report the first long-term glycemic correction of a diabetic,immunocompetent animal model using human SC-$\$ SC-$\$ were encapsulated with alginate derivatives capable of mitigating foreign-body responses in vivo and implanted into the intraperitoneal space of C57BL/6J mice treated with streptozotocin,which is an animal model for chemically induced type 1 diabetes. These implants induced glycemic correction without any immunosuppression until their removal at 174 d after implantation. Human C-peptide concentrations and in vivo glucose responsiveness demonstrated therapeutically relevant glycemic control. Implants retrieved after 174 d contained viable insulin-producing cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Hsieh T-C et al. (DEC 2007)
International journal of oncology 31 6 1293--300
The 2,6-disubstituted purine reversine induces growth arrest and polyploidy in human cancer cells.
Reversine (RV) is the synthetic purine identified from a protein kinase-based screen of purine mimetics and it has been shown to induce muscle myoblast differentiation into progenitor cells that can be further converted into other cell lineages. Since protein kinases play a pivotal role in cell cycle control,we hypothesize that RV might affect the proliferation of cancer cells. Herein we report that RV inhibited growth of cultured human tumor cells,respectively,PC-3,HeLa,CWR22Rv1,and DU-145 cells,and induced accumulation of polyploidal cells with textgreater or =4N DNA content. However,RV was without effect on growth of normal prostate epithelial cells. RV-treated PC-3 cells showed enlarged nuclei and an estimated 100-fold increase in cell size. Moreover,PC-3 cells treated with RV for 2-4 days were accompanied by a marked increase in the expression of p21(WAF1),a modest elevation in the levels of cyclin D3 and CDK6 and concomitantly,also a substantial reduction in cyclin B and CDK1. These results suggest that RV may induce polyploidy and increase in cell size by up-regulating p21(WAF1) and cyclin D3/CDK6,while simultaneously suppressing the expression of cyclin B and CDK1.
View Publication
产品类型:
产品号#:
72612
72614
产品名:
Reversine
逆转素(Reversine)
Borowiak M et al. (APR 2009)
Cell stem cell 4 4 348--58
Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells.
An essential step for therapeutic and research applications of stem cells is the ability to differentiate them into specific cell types. Endodermal cell derivatives,including lung,liver,and pancreas,are of interest for regenerative medicine,but efforts to produce these cells have been met with only modest success. In a screen of 4000 compounds,two cell-permeable small molecules were indentified that direct differentiation of ESCs into the endodermal lineage. These compounds induce nearly 80% of ESCs to form definitive endoderm,a higher efficiency than that achieved by Activin A or Nodal,commonly used protein inducers of endoderm. The chemically induced endoderm expresses multiple endodermal markers,can participate in normal development when injected into developing embryos,and can form pancreatic progenitors. The application of small molecules to differentiate mouse and human ESCs into endoderm represents a step toward achieving a reproducible and efficient production of desired ESC derivatives.
View Publication
产品类型:
产品号#:
72312
72314
72512
72514
产品名:
(-) -Indolactam V(吲哚内酰胺 V)
IDE1
IDE1
(Sep 2024)
Stem Cell Research & Therapy 15 8
Prostatic lineage differentiation from human embryonic stem cells through inducible expression of NKX3-1
BackgroundUnderstanding the lineage differentiation of human prostate not only is crucial for basic research on human developmental biology but also significantly contributes to the management of prostate-related disorders. Current knowledge mainly relies on studies on rodent models,lacking human-derived alternatives despite clinical samples may provide a snapshot at certain stage. Human embryonic stem cells can generate all the embryonic lineages including the prostate,and indeed a few studies demonstrate such possibility based on co-culture or co-transplantation with urogenital mesenchyme into mouse renal capsule.MethodsTo establish a stepwise protocol to obtain prostatic organoids in vitro from human embryonic stem cells,we apply chemicals and growth factors by mimicking the regulation network of transcription factors and signal transduction pathways,and construct cell lines carrying an inducible NKX3-1 expressing cassette,together with three-dimensional culture system. Unpaired t test was applied for statistical analyses.ResultsWe first successfully generate the definitive endoderm,hindgut,and urogenital sinus cells. The embryonic stem cell-derived urogenital sinus cells express prostatic key transcription factors AR and FOXA1,but fail to express NKX3-1. Therefore,we construct NKX3-1-inducible cell line by homologous recombination,which is eventually able to yield AR,FOXA1,and NKX3-1 triple-positive urogenital prostatic lineage cells through stepwise differentiation. Finally,combined with 3D culture we successfully derive prostate-like organoids with certain structures and prostatic cell populations.ConclusionsThis study reveals the crucial role of NKX3-1 in prostatic differentiation and offers the inducible NKX3-1 cell line,as well as provides a stepwise differentiation protocol to generate human prostate-like organoids,which should facilitate the studies on prostate development and disease pathogenesis.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13287-024-03886-y.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
(Jun 2025)
Nature Communications 16
Iterative transcription factor screening enables rapid generation of microglia-like cells from human iPSC
Differentiation of induced pluripotent stem cells (iPSCs) into specialized cell types is essential for uncovering cell-type specific molecular mechanisms and interrogating cellular function. Transcription factor screens have enabled efficient production of a few cell types; however,engineering cell types that require complex transcription factor combinations remains challenging. Here,we report an iterative,high-throughput single-cell transcription factor screening method that enables the identification of transcription factor combinations for specialized cell differentiation,which we validated by differentiating human microglia-like cells. We found that the expression of six transcription factors,SPI1,CEBPA,FLI1,MEF2C,CEBPB,and IRF8,is sufficient to differentiate human iPSC into cells with transcriptional and functional similarity to primary human microglia within 4 days. Through this screening method,we also describe a novel computational method allowing the exploration of single-cell RNA sequencing data derived from transcription factor perturbation assays to construct causal gene regulatory networks for future cell fate engineering. Liu et al. developed a platform to identify transcription factors (TFs) that turn stem cells into desired cell types. They discovered six key TFs that produce microglia efficiently,enhancing cell differentiation methods.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
(Feb 2024)
Journal of Biomedical Science 31 42
Reduced interleukin-18 secretion by human monocytic cells in response to infections with hyper-virulent
BackgroundStreptococcus pyogenes (group A streptococcus,GAS) causes a variety of diseases ranging from mild superficial infections of the throat and skin to severe invasive infections,such as necrotizing soft tissue infections (NSTIs). Tissue passage of GAS often results in mutations within the genes encoding for control of virulence (Cov)R/S two component system leading to a hyper-virulent phenotype. Dendritic cells (DCs) are innate immune sentinels specialized in antigen uptake and subsequent T cell priming. This study aimed to analyze cytokine release by DCs and other cells of monocytic origin in response to wild-type and natural covR/S mutant infections.MethodsHuman primary monocyte-derived (mo)DCs were used. DC maturation and release of pro-inflammatory cytokines in response to infections with wild-type and covR/S mutants were assessed via flow cytometry. Global proteome changes were assessed via mass spectrometry. As a proof-of-principle,cytokine release by human primary monocytes and macrophages was determined.ResultsIn vitro infections of moDCs and other monocytic cells with natural GAS covR/S mutants resulted in reduced secretion of IL-8 and IL-18 as compared to wild-type infections. In contrast,moDC maturation remained unaffected. Inhibition of caspase-8 restored secretion of both molecules. Knock-out of streptolysin O in GAS strain with unaffected CovR/S even further elevated the IL-18 secretion by moDCs. Of 67 fully sequenced NSTI GAS isolates,28 harbored mutations resulting in dysfunctional CovR/S. However,analyses of plasma IL-8 and IL-18 levels did not correlate with presence or absence of such mutations.ConclusionsOur data demonstrate that strains,which harbor covR/S mutations,interfere with IL-18 and IL-8 responses in monocytic cells by utilizing the caspase-8 axis. Future experiments aim to identify the underlying mechanism and consequences for NSTI patients.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12929-024-01014-9.
View Publication
产品类型:
产品号#:
17858
17858RF
100-0694
产品名:
EasySep™人CD14正选试剂盒II
RoboSep™ 人CD14正选试剂盒II
EasySep™人CD14正选试剂盒II
Alla RK and Cairns BR (JAN 2014)
PloS one 9 1 e85648
RNA polymerase III transcriptomes in human embryonic stem cells and induced pluripotent stem cells, and relationships with pluripotency transcription factors
Recent genomic approaches have revealed that the repertoire of RNA Pol III-transcribed genes varies in different human cell types,and that this variation is likely determined by a combination of the chromatin landscape,cell-specific DNA-binding transcription factors,and collaboration with RNA Pol II. Although much is known about this regulation in differentiated human cells,there is presently little understanding of this aspect of the Pol III system in human ES cells. Here,we determine the occupancy profiles of Pol III components in human H1 ES cells,and also induced pluripotent cells,and compare to known profiles of chromatin,transcription factors,and RNA expression. We find a relatively large fraction of the Pol III repertoire occupied in human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). In ES cells we find clear correlations between Pol III occupancy and active chromatin. Interestingly,we find a highly significant fraction of Pol III-occupied genes with adjacent binding events by pluripotency factors in ES cells,especially NANOG. Notably,in human ES cells we find H3K27me3 adjacent to but not overlapping many active Pol III loci. We observe in all such cases,a peak of H3K4me3 and/or RNA Pol II,between the H3K27me3 and Pol III binding peaks,suggesting that H3K4me3 and Pol II activity may “insulate? Pol III from neighboring repressive H3K27me3. Further,we find iPSCs have a larger Pol III repertoire than their precursors. Finally,the active Pol III genome in iPSCs is not completely reprogrammed to a hESC like state and partially retains the transcriptional repertoire of the precursor. Together,our correlative results are consistent with Pol III binding and activity in human ES cells being enabled by active/permissive chromatin that is shaped in part by the pluripotency network of transcription factors and RNA Pol II activity.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Carpenter L et al. (APR 2012)
Stem cells and development 21 6 977--86
Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat.
Induced pluripotent stem (iPS) cells are being used increasingly to complement their embryonic counterparts to understand and develop the therapeutic potential of pluripotent cells. Our objectives were to identify an efficient cardiac differentiation protocol for human iPS cells as monolayers,and demonstrate that the resulting cardiac progenitors could provide a therapeutic benefit in a rodent model of myocardial infarction. Herein,we describe a 14-day protocol for efficient cardiac differentiation of human iPS cells as a monolayer,which routinely yielded a mixed population in which over 50% were cardiomyocytes,endothelium,or smooth muscle cells. When differentiating,cardiac progenitors from day 6 of this protocol were injected into the peri-infarct region of the rat heart; after coronary artery ligation and reperfusion,we were able to show that human iPS cell-derived cardiac progenitor cells engrafted,differentiated into cardiomyocytes and smooth muscle,and persisted for at least 10 weeks postinfarct. Hearts injected with iPS-derived cells showed a nonsignificant trend toward protection from decline in function after myocardial infarction,as assessed by magnetic resonance imaging at 10 weeks,such that the ejection fraction at 10 weeks in iPS treated hearts was 62%±4%,compared to that of control infarcted hearts at 45%±9% (Ptextless0.2). In conclusion,we demonstrated efficient cardiac differentiation of human iPS cells that gave rise to progenitors that were retained within the infarcted rat heart,and reduced remodeling of the heart after ischemic damage.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
(Mar 2025)
PLOS One 20 3
Sequences within and upstream of the mouse Ets1 gene drive high level expression in B cells, but are not sufficient for consistent expression in T cells
The levels of transcription factor Ets1 are high in resting B and T cells,but are downregulated by signaling through antigen receptors and Toll-like receptors (TLRs). Loss of Ets1 in mice leads to excessive immune cell activation and development of an autoimmune syndrome and reduced Ets1 expression has been observed in human PBMCs in the context of autoimmune diseases. In B cells,Ets1 serves to prevent premature activation and differentiation to antibody-secreting cells. Given these important roles for Ets1 in the immune response,stringent control of Ets1 gene expression levels is required for homeostasis. However,the genetic regulatory elements that control expression of the Ets1 gene remain relatively unknown. Here we identify a topologically-associating domain (TAD) in the chromatin of B cells that includes the mouse Ets1 gene locus and describe an interaction hub that extends over 100 kb upstream and into the gene body. Additionally,we compile epigenetic datasets to find several putative regulatory elements within the interaction hub by identifying regions of high DNA accessibility and enrichment of active enhancer histone marks. Using reporter constructs,we determine that DNA sequences within this interaction hub are sufficient to direct reporter gene expression in lymphoid tissues of transgenic mice. Further analysis indicates that the reporter construct drives faithful expression of the reporter gene in mouse B cells,but variegated expression in T cells,suggesting the existence of T cell regulatory elements outside this region. To investigate how the downregulation of Ets1 transcription is associated with alterations in the epigenetic landscape of stimulated B cells,we performed ATAC-seq in resting and BCR-stimulated primary B cells and identified four regions within and upstream of the Ets1 locus that undergo changes in chromatin accessibility that correlate to Ets1 gene expression. Interestingly,functional analysis of several putative Ets1 regulatory elements using luciferase constructs suggested a high level of functional redundancy. Taken together our studies reveal a complex network of regulatory elements and transcription factors that coordinate the B cell-specific expression of Ets1.
View Publication
产品类型:
产品号#:
19854
19854RF
产品名:
EasySep™小鼠B细胞分选试剂盒
RoboSep™ 小鼠B细胞分选试剂盒
Y. Ishibashi et al. (Oct 2024)
Addiction Biology 29 10
Development of an evaluation method for addictive compounds based on electrical activity of human iPS cell‐derived dopaminergic neurons using microelectrode array
Addiction is known to occur through the consumption of substances such as pharmaceuticals,illicit drugs,food,alcohol and tobacco. These addictions can be viewed as drug addiction,resulting from the ingestion of chemical substances contained in them. Multiple neural networks,including the reward system,anti‐reward/stress system and central immune system in the brain,are believed to be involved in the onset of drug addiction. Although various compound evaluations using microelectrode array (MEA) as an in vitro testing methods to evaluate neural activities have been conducted,methods for assessing addiction have not been established. In this study,we aimed to develop an in vitro method for assessing the addiction of compounds,as an alternative to animal experiments,using human iPS cell‐derived dopaminergic neurons with MEA measurements. MEA data before and after chronic exposure revealed specific changes in addictive compounds compared to non‐addictive compounds,demonstrating the ability to estimate addiction of compound. Additionally,conducting gene expression analysis on cultured samples after the tests revealed changes in the expression levels of various receptors (nicotine,dopamine and GABA) due to chronic administration of addictive compounds,suggesting the potential interpretation of these expression changes as addiction‐like responses in MEA measurements. The addiction assessment method using MEA measurements in human iPS cell‐derived dopaminergic neurons conducted in this study proves effective in evaluating addiction of compounds on human neural networks.
View Publication
产品类型:
产品号#:
05711
05790
100-1281
产品名:
NeuroCult™ SM1 神经添加物
BrainPhys™神经元培养基
NeuroCult™ SM1 神经添加物
Wang H et al. (JAN 2012)
Journal of translational medicine 10 1 167
Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells.
BACKGROUND: Recent data suggest that cancer stem cells (CSCs) play an important role in cancer,as these cells possess enhanced tumor-forming capabilities and are responsible for relapses after apparently curative therapies have been undertaken. Hence,novel cancer therapies will be needed to test for both tumor regression and CSC targeting. The use of oncolytic vaccinia virus (VACV) represents an attractive anti-tumor approach and is currently under evaluation in clinical trials. The purpose of this study was to demonstrate whether VACV does kill CSCs that are resistant to irradiation and chemotherapy. METHODS: Cancer stem-like cells were identified and separated from the human breast cancer cell line GI-101A by virtue of increased aldehyde dehydrogenase 1 (ALDH1) activity as assessed by the ALDEFLUOR assay and cancer stem cell-like features such as chemo-resistance,irradiation-resistance and tumor-initiating were confirmed in cell culture and in animal models. VACV treatments were applied to both ALDEFLUOR-positive cells in cell culture and in xenograft tumors derived from these cells. Moreover,we identified and isolated CD44(+)CD24(+)ESA(+) cells from GI-101A upon an epithelial-mesenchymal transition (EMT). These cells were similarly characterized both in cell culture and in animal models. RESULTS: We demonstrated for the first time that the oncolytic VACV GLV-1h68 strain replicated more efficiently in cells with higher ALDH1 activity that possessed stem cell-like features than in cells with lower ALDH1 activity. GLV-1h68 selectively colonized and eventually eradicated xenograft tumors originating from cells with higher ALDH1 activity. Furthermore,GLV-1h68 also showed preferential replication in CD44(+)CD24(+)ESA(+) cells derived from GI-101A upon an EMT induction as well as in xenograft tumors originating from these cells that were more tumorigenic than CD44(+)CD24(-)ESA(+) cells. CONCLUSIONS: Taken together,our findings indicate that GLV-1h68 efficiently replicates and kills cancer stem-like cells. Thus,GLV-1h68 may become a promising agent for eradicating both primary and metastatic tumors,especially tumors harboring cancer stem-like cells that are resistant to chemo and/or radiotherapy and may be responsible for recurrence of tumors.
View Publication