Perna F et al. (OCT 2017)
Cancer cell 32 4 506--519.e5
Integrating Proteomics and Transcriptomics for Systematic Combinatorial Chimeric Antigen Receptor Therapy of AML.
Chimeric antigen receptor (CAR) therapy targeting CD19 has yielded remarkable outcomes in patients with acute lymphoblastic leukemia. To identify potential CAR targets in acute myeloid leukemia (AML),we probed the AML surfaceome for overexpressed molecules with tolerable systemic expression. We integrated large transcriptomics and proteomics datasets from malignant and normal tissues,and developed an algorithm to identify potential targets expressed in leukemia stem cells,but not in normal CD34+CD38- hematopoietic cells,T cells,or vital tissues. As these investigations did not uncover candidate targets with a profile as favorable as CD19,we developed a generalizable combinatorial targeting strategy fulfilling stringent efficacy and safety criteria. Our findings indicate that several target pairings hold great promise for CAR therapy of AML.
View Publication
产品类型:
产品号#:
70002
70002.1
70002.2
70002.3
70002.4
70002.5
产品名:
P. Gonzalez-Sanchez et al. ( 2017)
Frontiers in cellular neuroscience 11 363
Store-Operated Calcium Entry Is Required for mGluR-Dependent Long Term Depression in Cortical Neurons.
Store-operated calcium entry (SOCE) is a Calcium (Ca2+) influx pathway activated by depletion of intracellular stores that occurs in eukaryotic cells. In neurons,the presence and functions of SOCE are still in question. Here,we show evidences for the existence of SOCE in primary mouse cortical neurons. Endoplasmic reticulum (ER)-Ca2+ depletion using thapsigargin (Tg) triggered a maintained cytosolic Ca2+ increase,which rapidly returned to basal level in the presence of the SOCE blockers 2-Aminoethoxydiphenyl borate (2-APB) and YM-58483. Neural SOCE is also engaged by activation of metabotropic glutamate receptors (mGluRs) with (S)-3,5-dihydroxyphenylglycine (DHPG) (agonist of group I mGluRs),being an essential mechanism to maintain the mGluR-driven Ca2+ signal. Activation of group I of mGluRs triggers long-term depression (LTD) in many brain regions,but the underlying mechanism and,specifically,the necessity of Ca2+ increase in the postsynaptic neuron is controversial. In primary cortical neurons,we now show that the inhibition of Ca2+ influx through SOCE impaired DHPG-LTD,pointing out a key function of calcium and SOCE in synaptic plasticity.
View Publication
Retinoblastoma-binding proteins 4 and 9 are important for human pluripotent stem cell maintenance.
OBJECTIVE: The molecular mechanisms that maintain human pluripotent stem (PS) cells are not completely understood. Here we sought to identify new candidate PS cell regulators to facilitate future improvements in their generation,expansion,and differentiation. MATERIALS AND METHODS: We used bioinformatic analyses of multiple serial-analysis-of-gene-expression libraries (generated from human PS cells and their differentiated derivatives),together with small interfering RNA (siRNA) screening to identify candidate pluripotency regulators. Validation of candidate regulators involved promoter analyses,Affymetrix profiling,real-time PCR,and immunoprecipitation. RESULTS: Promoter analysis of genes differentially expressed across multiple serial-analysis-of-gene-expression libraries identified E2F motifs in the promoters of many PS cell-specific genes (e.g.,POU5F1,NANOG,SOX2,FOXD3). siRNA analyses identified two retinoblastoma binding proteins (RBBP4,RBBP9) as required for maintenance of multiple human PS cell types. Both RBBPs were bound to RB in human PS cells,and E2F motifs were present in the promoters of genes whose expression was altered by decreasing RBBP4 and RBBP9 expression. Affymetrix and real-time PCR studies of siRNA-treated human PS cells showed that reduced RBBP4 or RBBP9 expression concomitantly decreased expression of POU5F1,NANOG,SOX2,and/or FOXD3 plus certain cell cycle genes (e.g.,CCNA2,CCNB1),while increasing expression of genes involved in organogenesis (particularly neurogenesis). CONCLUSIONS: These results reveal new candidate positive regulators of human PS cells,providing evidence of their ability to regulate expression of pluripotency,cell cycle,and differentiation genes in human PS cells. These data provide valuable new leads for further elucidating mechanisms of human pluripotency.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
36254
07905
78003
78003.1
78003.2
85850
85857
85870
85875
产品名:
DMEM/F-12 with 15 mM HEPES
DPBS(含 2% 胎牛血清)
重组人bFGF
重组人bFGF
重组人bFGF
mTeSR™1
mTeSR™1
Dawson MA et al. (OCT 2011)
Nature 478 7370 529--33
Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia.
Recurrent chromosomal translocations involving the mixed lineage leukaemia (MLL) gene initiate aggressive forms of leukaemia,which are often refractory to conventional therapies. Many MLL-fusion partners are members of the super elongation complex (SEC),a critical regulator of transcriptional elongation,suggesting that aberrant control of this process has an important role in leukaemia induction. Here we use a global proteomic strategy to demonstrate that MLL fusions,as part of SEC and the polymerase-associated factor complex (PAFc),are associated with the BET family of acetyl-lysine recognizing,chromatin 'adaptor' proteins. These data provided the basis for therapeutic intervention in MLL-fusion leukaemia,via the displacement of the BET family of proteins from chromatin. We show that a novel small molecule inhibitor of the BET family,GSK1210151A (I-BET151),has profound efficacy against human and murine MLL-fusion leukaemic cell lines,through the induction of early cell cycle arrest and apoptosis. I-BET151 treatment in two human leukaemia cell lines with different MLL fusions alters the expression of a common set of genes whose function may account for these phenotypic changes. The mode of action of I-BET151 is,at least in part,due to the inhibition of transcription at key genes (BCL2,C-MYC and CDK6) through the displacement of BRD3/4,PAFc and SEC components from chromatin. In vivo studies indicate that I-BET151 has significant therapeutic value,providing survival benefit in two distinct mouse models of murine MLL-AF9 and human MLL-AF4 leukaemia. Finally,the efficacy of I-BET151 against human leukaemia stem cells is demonstrated,providing further evidence of its potent therapeutic potential. These findings establish the displacement of BET proteins from chromatin as a promising epigenetic therapy for these aggressive leukaemias.
View Publication
产品类型:
产品号#:
73712
73714
产品名:
I-BET151
I-BET151
Andrade LNdS et al. (SEP 2012)
Human Molecular Genetics 21 17 3825--3834
Evidence for premature aging due to oxidative stress in iPSCs from Cockayne syndrome
Cockayne syndrome (CS) is a human premature aging disorder associated with neurological and developmental abnormalities,caused by mutations mainly in the CS group B gene (ERCC6). At the molecular level,CS is characterized by a deficiency in the transcription-couple DNA repair pathway. To understand the role of this molecular pathway in a pluripotent cell and the impact of CSB mutation during human cellular development,we generated induced pluripotent stem cells (iPSCs) from CSB skin fibroblasts (CSB-iPSC). Here,we showed that the lack of functional CSB does not represent a barrier to genetic reprogramming. However,iPSCs derived from CSB patient's fibroblasts exhibited elevated cell death rate and higher reactive oxygen species (ROS) production. Moreover,these cellular phenotypes were accompanied by an up-regulation of TXNIP and TP53 transcriptional expression. Our findings suggest that CSB modulates cell viability in pluripotent stem cells,regulating the expression of TP53 and TXNIP and ROS production.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Vossenkä et al. (AUG 2013)
The Journal of experimental medicine 210 9 1665--1674
A role for gut-associated lymphoid tissue in shaping the human B cell repertoire.
We have tracked the fate of immature human B cells at a critical stage in their development when the mature B cell repertoire is shaped. We show that a major subset of bone marrow emigrant immature human B cells,the transitional 2 (T2) B cells,homes to gut-associated lymphoid tissue (GALT) and that most T2 B cells isolated from human GALT are activated. Activation in GALT is a previously unknown potential fate for immature human B cells. The process of maturation from immature transitional B cell through to mature naive B cell includes the removal of autoreactive cells from the developing repertoire,a process which is known to fail in systemic lupus erythematosus (SLE). We observe that immature B cells in SLE are poorly equipped to access the gut and that gut immune compartments are depleted in SLE. Thus,activation of immature B cells in GALT may function as a checkpoint that protects against autoimmunity. In healthy individuals,this pathway may be involved in generating the vast population of IgA plasma cells and also the enigmatic marginal zone B cell subset that is poorly understood in humans.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
J. L. Hope et al. (feb 2022)
Journal of immunology (Baltimore,Md. : 1950) 208 3 603--617
MicroRNA-139 Expression Is Dispensable for the Generation of Influenza-Specific CD8+ T Cell Responses.
MicroRNAs (miRNAs/miRs) are small,endogenous noncoding RNAs that are important post-transcriptional regulators with clear roles in the development of the immune system and immune responses. Using miRNA microarray profiling,we characterized the expression profile of naive and in vivo generated murine effector antiviral CD8+ T cells. We observed that out of 362 measurable mature miRNAs,120 were differentially expressed by at least 2-fold in influenza-specific effector CD8+ CTLs compared with naive CD8+ T cells. One miRNA found to be highly downregulated on both strands in effector CTLs was miR-139. Because previous studies have indicated a role for miR-139-mediated regulation of CTL effector responses,we hypothesized that deletion of miR-139 would enhance antiviral CTL responses during influenza virus infection. We generated miR-139-/- mice or overexpressed miR-139 in T cells to assess the functional contribution of miR-139 expression in CD8+ T cell responses. Our study demonstrates that the development of naive T cells and generation or differentiation of effector or memory CD8+ T cell responses to influenza virus infection are not impacted by miR-139 deficiency or overexpression; yet,miR-139-/- CD8+ T cells are outcompeted by wild-type CD8+ T cells in a competition setting and demonstrate reduced responses to Listeria monocytogenes Using an in vitro model of T cell exhaustion,we confirmed that miR-139 expression similarly does not impact the development of T cell exhaustion. We conclude that despite significant downregulation of miR-139 following in vivo and in vitro activation,miR-139 expression is dispensable for influenza-specific CTL responses.
View Publication
AG73-GelMA/AlgMA hydrogels provide a stable microenvironment for the generation of pancreatic progenitor organoids
Patient specific induced pluripotent stem cells (iPSCs) derived ? cells represent an effective means for disease modeling and autologous diabetes cell replacement therapy. In this study,an AG73-5%gelatin methacryloyl (GelMA) /2% alginate methacrylate (AlgMA) hydrogel was employed to generate pancreatic progenitor (PP) organoids and improve stem cell-derived ? (SC-?) cell differentiation protocol. The laminin-derived homolog AG73,which mimics certain cell?matrix interactions,facilitates AKT signaling pathway activation to promote PDX1+/NKX6.1+ PP organoid formation and effectively modulates subsequent epithelial–mesenchymal transition (EMT) in the endocrine lineage. The 5%GelMA/2%AlgMA hydrogel mimics the physiological stiffness of the pancreas,providing the optimal mechanical stress and spatial structure for PP organoid differentiation. The Syndecan-4 (SDC4)-ITGAV complex plays a pivotal role in the early stages of pancreatic development by facilitating the formation of SOX9+/PDX1+ bipotent PPs. Our findings demonstrate that AG73-GelMA/AlgMA hydrogel-derived SC-? cells exhibit enhanced insulin secretion and accelerated hyperglycemia reversal in vivo. This study presents a cost-effective,stable,and efficient alternative for the comprehensive 3D culture of SC-? cells in vitro by mitigating the uncertainties associated with conventional culture methods.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
(Jun 2024)
The EMBO Journal 43 16
Physiological regulation of neuronal Wnt activity is essential for TDP-43 localization and function
Nuclear exclusion of the RNA- and DNA-binding protein TDP-43 can induce neurodegeneration in different diseases. Diverse processes have been implicated to influence TDP-43 mislocalization,including disrupted nucleocytoplasmic transport (NCT); however,the physiological pathways that normally ensure TDP-43 nuclear localization are unclear. The six-transmembrane enzyme glycerophosphodiester phosphodiesterase 2 (GDE2 or GDPD5) cleaves the glycosylphosphatidylinositol (GPI) anchor that tethers some proteins to the membrane. Here we show that GDE2 maintains TDP-43 nuclear localization by regulating the dynamics of canonical Wnt signaling. Ablation of GDE2 causes aberrantly sustained Wnt activation in adult neurons,which is sufficient to cause NCT deficits,nuclear pore abnormalities,and TDP-43 nuclear exclusion. Disruption of GDE2 coincides with TDP-43 abnormalities in postmortem tissue from patients with amyotrophic lateral sclerosis (ALS). Further,GDE2 deficits are evident in human neural cell models of ALS,which display erroneous Wnt activation that,when inhibited,increases mRNA levels of genes regulated by TDP-43. Our study identifies GDE2 as a critical physiological regulator of Wnt signaling in adult neurons and highlights Wnt pathway activation as an unappreciated mechanism contributing to nucleocytoplasmic transport and TDP-43 abnormalities in disease. Synopsis Nuclear exclusion of TDP-43 is observed in various pathologies,but the physiological mechanisms that ensure its nuclear localization are not well-known. This work shows that inhibition of persistent Wnt activation in neurons by GDE2 prevents TDP-43 nuclear exclusion. GDE2 inhibits canonical Wnt signaling in adult postmitotic neurons.Sustained activation of canonical Wnt signaling in neurons disrupts the nuclear pore complex,impairs nucleocytoplasmic transport,and results in TDP-43 nuclear exclusion.iPS neurons from patients with C9orf72 ALS show decreased GDE2 expression and increased activation of canonical Wnt signaling.Inhibition of Wnt activation mitigates TDP-43 dysfunction in C9orf72 iPS neurons. GDE2 maintains TDP-43 nuclear localization by inhibiting Wnt activation in neurons.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
(Mar 2025)
Life Science Alliance 8 6
A novel human organoid model system reveals requirement of TCF4 for oligodendroglial differentiation
In this study,we developed a cell system to study TCF4 in human oligodendrocyte differentiation,showed that TCF4 regulates human oligodendroglial differentiation in a dose-dependent manner,and established a system to dissect TCF4 function in a human tissue–like context. Heterozygous mutations of TCF4 in humans cause Pitt–Hopkins syndrome,a neurodevelopmental disease associated with intellectual disability and brain malformations. Although most studies focus on the role of TCF4 in neural stem cells and neurons,we here set out to assess the implication of TCF4 for oligodendroglial differentiation. We discovered that both monoallelic and biallelic mutations in TCF4 result in a diminished capacity to differentiate human neural progenitor cells toward myelinating oligodendrocytes through the forced expression of the transcription factors SOX10,OLIG2,and NKX6.2. Using this experimental strategy,we established a novel organoid model,which generates oligodendroglial cells within a human neurogenic tissue–like context. Also,here we found a reduced ability of TCF4 heterozygous cells to differentiate toward oligodendroglial cells. In sum,we establish a role of human TCF4 in oligodendrocyte differentiation and provide a model system,which allows to dissect the disease etiology in a human tissue–like context.
View Publication