Gilpin SE et al. (NOV 2014)
The Annals of thoracic surgery 98 5 1721--------9; discussion 1729
Enhanced lung epithelial specification of human induced pluripotent stem cells on decellularized lung matrix.
BACKGROUND Whole-lung scaffolds can be created by perfusion decellularization of cadaveric donor lungs. The resulting matrices can then be recellularized to regenerate functional organs. This study evaluated the capacity of acellular lung scaffolds to support recellularization with lung progenitors derived from human induced pluripotent stem cells (iPSCs). METHODS Whole rat and human lungs were decellularized by constant-pressure perfusion with 0.1% sodium dodecyl sulfate solution. Resulting lung scaffolds were cryosectioned into slices or left intact. Human iPSCs were differentiated to definitive endoderm,anteriorized to a foregut fate,and then ventralized to a population expressing NK2 homeobox 1 (Nkx2.1). Cells were seeded onto slices and whole lungs,which were maintained under constant perfusion biomimetic culture. Lineage specification was assessed by quantitative polymerase chain reaction and immunofluorescent staining. Regenerated left lungs were transplanted in an orthotopic position. RESULTS Activin-A treatment,followed by transforming growth factor-$\$,induced differentiation of human iPSCs to anterior foregut endoderm as confirmed by forkhead box protein A2 (FOXA2),SRY (Sex Determining Region Y)-Box 17 (SOX17),and SOX2 expression. Cells cultured on decellularized lung slices demonstrated proliferation and lineage commitment after 5 days. Cells expressing Nkx2.1 were identified at 40% to 60% efficiency. Within whole-lung scaffolds and under perfusion culture,cells further upregulated Nkx2.1 expression. After orthotopic transplantation,grafts were perfused and ventilated by host vasculature and airways. CONCLUSIONS Decellularized lung matrix supports the culture and lineage commitment of human iPSC-derived lung progenitor cells. Whole-organ scaffolds and biomimetic culture enable coseeding of iPSC-derived endothelial and epithelial progenitors and enhance early lung fate. Orthotopic transplantation may enable further in vivo graft maturation.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07920
09500
85850
85857
85870
85875
07922
产品名:
ACCUTASE™
BIT 9500血清替代物
mTeSR™1
mTeSR™1
ACCUTASE™
S. Schmidt et al. (nov 2019)
Pathogens (Basel,Switzerland) 8 4
Distinct Effects of Immunosuppressive Drugs on the Anti-Aspergillus Activity of Human Natural Killer Cells.
As the prognosis of invasive aspergillosis remains unacceptably poor in patients undergoing hematopoietic stem cell transplantation (HSCT),there is a growing interest in the adoptive transfer of antifungal effector cells,such as Natural Killer (NK) cells. Because immunosuppressive agents are required in most HSCT recipients,knowledge of the impact of these compounds on the antifungal activity of NK cells is a prerequisite for clinical trials. We,therefore,assessed the effect of methylprednisolone (mPRED),cyclosporin A (CsA) and mycophenolic acid (MPA) at different concentrations on proliferation,apoptosis/necrosis,and the direct and indirect anti-Aspergillus activity of human NK cells. Methylprednisolone decreased proliferation and increased apoptosis of NK cells in a significant manner. After seven days,a reduction of viable NK cells was seen for all three immunosuppressants,which was significant for MPA only. Cyclosporin A significantly inhibited the direct hyphal damage by NK cells in a dose-dependent manner. None of the immunosuppressive compounds had a major impact on the measured levels of interferon-$\gamma$,granulocyte-macrophage colony-stimulating factor and RANTES (regulated on activation,normal T cell expressed and secreted; CCL5). Our data demonstrate that commonly used immunosuppressive compounds have distinct effects on proliferation,viability and antifungal activity of human NK cells,which should be considered in designing studies on the use of NK cells for adoptive antifungal immunotherapy.
View Publication
K. Hosseini et al. (Apr 2025)
IBRO Neuroscience Reports 18 8
Transcriptomic characterization of maturing neurons from human neural stem cells across developmental time points
Neurodevelopmental studies employing animal models encounter challenges due to interspecies differences and ethical concerns. Maturing neurons of human origin,undergoing several developmental stages,present a powerful alternative. In this study,human embryonic stem cell (H9 cell line) was differentiated into neural stem cells and subsequently matured into neurons over 30 days. Ion AmpliSeq™ was used for transcriptomic characterization of human stem cell-derived neurons at multiple time points. Data analysis revealed a progressive increase of markers associated with neuronal development and astrocyte markers,indicating the establishment of a co-culture accommodating both glial and neurons. Transcriptomic and pathway enrichment analysis also revealed a more pronounced GABAergic phenotype in the neurons,signifying their specialization toward this cell type. The findings confirm the robustness of these cells across different passages and demonstrate detailed progression through stages of development. The model is intended for neurodevelopmental applications and can be adapted to investigate how genetic modifications or exposure to chemicals,pharmaceuticals,and other environmental factors influence neurons and glial maturation.
View Publication
Kawatsu K et al. (APR 2008)
Journal of clinical microbiology 46 4 1226--31
Development and evaluation of immunochromatographic assay for simple and rapid detection of Campylobacter jejuni and Campylobacter coli in human stool specimens.
An immunochromatographic assay (Campy-ICA) using a newly generated single monoclonal antibody against a 15-kDa cell surface protein of Campylobacter jejuni was developed. When cell suspensions of 86 C. jejuni strains and 27 Campylobacter coli strains were treated with a commercially available bacterial protein extraction reagent and the resulting extracts were tested with the Campy-ICA,they all yielded positive results. The minimum detectable limits for the C. jejuni strains ranged from 1.8 x 10(4) to 8.2 x 10(5) CFU/ml of cell suspension,and those for the C. coli strains ranged from 1.4 x 10(5) to 4.6 x 10(6) CFU/ml of cell suspension. All 26 non-Campylobacter species tested yielded negative results with the Campy-ICA. To evaluate the ability of the Campy-ICA to detect C. jejuni and C. coli in human stool specimens,suspensions of 222 stool specimens from patients with acute gastroenteritis were treated with the bacterial protein extraction reagent,and the resulting extracts were tested with the Campy-ICA. The Campy-ICA results showed a sensitivity of 84.8% (28 of 33 specimens) and a specificity of 100% (189 of 189 specimens) compared to the results of isolation of C. jejuni and C. coli from the stool specimens by a bacterial culture test. The Campy-ICA was simple to perform and was able to detect Campylobacter antigen in a fecal extract within 15 min. These results suggest that Campy-ICA testing of fecal extracts may be useful as a simple and rapid adjunct to stool culture for detecting C. jejuni and C. coli in human stool specimens.
View Publication
Greish K et al. ( )
Anticancer research 25 6B 4245--8
Protective effect of melatonin on human peripheral blood hematopoeitic stem cells against doxorubicin cytotoxicity.
BACKGROUND: The dose-limiting toxicity of doxorubicin on hematopoietic stem cells reduces the maximum benefit from this powerful drug. Melatonin may play a role in reducing this toxicity. MATERIALS AND METHODS: Melatonin at 10 microM was used while challenging human peripheral blood stem cells (PBSC) with doxorubicin (0.6 microM and 1 microM),and colony formation was used to evaluate the protective effect of melatonin. RESULTS: Melatonin was protective for the myeloid and erythroid series when given during or 1 hour after,but not before,doxorubicin,as measured by colony assay. This protection was independent from its antioxidant function as measured by 2',7'-dichlodihydro-fluorescein diacetate and was selective for PBSC when compared to the MCF-7 cancer cell line. CONCLUSION: The results suggest the importance of the time sequence for melatonin administration to exert its protective effect in relation to doxorubicin treatment,as well as its protective effect on both erythroid and myeloid elements independent from its antioxidant function.
View Publication
产品类型:
产品号#:
84434
84444
产品名:
Courtot A-M et al. (OCT 2014)
BioResearch open access 3 5 206--216
Morphological analysis of human induced pluripotent stem cells during induced differentiation and reverse programming.
The fine analysis of cell components during the generation of pluripotent cells and their comparison to bone fide human embryonic stem cells (hESCs) are valuable tools to understand their biological behavior. In this report,human mesenchymal cells (hMSCs) generated from the human ES cell line H9,were reprogrammed back to induced pluripotent state using Oct-4,Sox2,Nanog,and Lin28 transgenes. Human induced pluripotent stem cells (hIPSCs) were analyzed using electron microscopy and compared with regard to the original hESCs and the hMSCs from which they were derived. This analysis shows that hIPSCs and the original hESCs are morphologically undistinguishable but differ from the hMSCs with respect to the presence of several morphological features of undifferentiated cells at both the cytoplasmic (ribosomes,lipid droplets,glycogen,scarce reticulum) and nuclear levels (features of nuclear plasticity,presence of euchromatin,reticulated nucleoli). We show that hIPSC colonies generated this way presented epithelial aspects with specialized junctions highlighting morphological criteria of the mesenchymal-epithelial transition in cells engaged in a successful reprogramming process. Electron microscopic analysis revealed also specific morphological aspects of partially reprogrammed cells. These results highlight the valuable use of electron microscopy for a better knowledge of the morphological aspects of IPSC and cellular reprogramming.
View Publication