Yanai A et al. ( 2016)
Methods in molecular biology (Clifton,N.J.) 1307 357--369
Efficient Production of Photoreceptor Precursor Cells from Human Embryonic Stem Cells.
Transplantation of photoreceptor precursor cells (PPCs) differentiated from human embryonic stem cells (hESCs) is a promising approach to treat common blinding diseases such as age-related macular degeneration and retinitis pigmentosa. However,existing PPC generation methods are inefficient. To enhance differentiation protocols for rapid and high-yield production of PPCs,we focused on optimizing the handling of the cells by including feeder-independent growth of hESCs,using size-controlled embryoid bodies (EBs),and addition of triiodothyronine (T3) and taurine to the differentiation medium,with subsequent removal of undifferentiated cells via negative cell-selection. Our novel protocol produces higher yields of PPCs than previously reported while reducing the time required for differentiation,which will help understand retinal diseases and facilitate large-scale preclinical trials.
View Publication
Lgr5-positive supporting cells generate new hair cells in the postnatal cochlea.
The prevalence of hearing loss after damage to the mammalian cochlea has been thought to be due to a lack of spontaneous regeneration of hair cells,the primary receptor cells for sound. Here,we show that supporting cells,which surround hair cells in the normal cochlear epithelium,differentiate into new hair cells in the neonatal mouse following ototoxic damage. Using lineage tracing,we show that new hair cells,predominantly outer hair cells,arise from Lgr5-expressing inner pillar and third Deiters cells and that new hair cell generation is increased by pharmacological inhibition of Notch. These data suggest that the neonatal mammalian cochlea has some capacity for hair cell regeneration following damage alone and that Lgr5-positive cells act as hair cell progenitors in the cochlea.
View Publication
产品类型:
产品号#:
72792
72794
产品名:
LY411575
LY411575
Li Y et al. (FEB 2016)
Journal of Immunology 196 4 1617--25
Hepatic Stellate Cells Directly Inhibit B Cells via Programmed Death-Ligand 1.
We demonstrated previously that mouse hepatic stellate cells (HSCs) suppress T cells via programmed death-ligand 1 (PD-L1),but it remains unknown whether they exert any effects on B cells,the other component of the adaptive immune system. In this study,we found that mouse HSCs directly inhibited B cells and that PD-L1 was also integrally involved. We found that HSCs inhibited the upregulation of activation markers on activated B cells,as well as the proliferation of activated B cells and their cytokine/Ig production in vitro,and that pharmaceutically or genetically blocking the interaction of PD-L1 with programmed cell death protein 1 impaired the ability of HSCs to inhibit B cells. To test the newly discovered B cell-inhibitory activity of HSCs in vivo,we developed a protocol of intrasplenic artery injection to directly deliver HSCs into the spleen. We found that local delivery of wild-type HSCs into the spleens of mice that had been immunized with 4-hydroxy-3-nitrophenylacetyl-Ficoll,a T cell-independent Ag,significantly suppressed Ag-specific IgM and IgG production in vivo,whereas splenic artery delivery of PD-L1-deficient HSCs failed to do so. In conclusion,in addition to inhibiting T cells,mouse HSCs concurrently inhibit B cells via PD-L1. This direct B cell-inhibitory activity of HSCs should contribute to the mechanism by which HSCs maintain the liver's immune homeostasis.
View Publication
产品类型:
产品号#:
19854
19854RF
产品名:
EasySep™小鼠B细胞分选试剂盒
RoboSep™ 小鼠B细胞分选试剂盒
Pessina A et al. (DEC 2001)
Toxicology in vitro : an international journal published in association with BIBRA 15 6 729--40
Prevalidation of a model for predicting acute neutropenia by colony forming unit granulocyte/macrophage (CFU-GM) assay.
This report describes an international prevalidation study conducted to optimise the Standard Operating Procedure (SOP) for detecting myelosuppressive agents by CFU-GM assay and to study a model for predicting (by means of this in vitro hematopoietic assay) the acute xenobiotic exposure levels that cause maximum tolerated decreases in absolute neutrophil counts (ANC). In the first phase of the study (Protocol Refinement),two SOPs were assessed,by using two cell culture media (Test A,containing GM-CSF; and Test B,containing G-CSF,GM-CSF,IL-3,IL-6 and SCF),and the two tests were applied to cells from both human (bone marrow and umbilical cord blood) and mouse (bone marrow) CFU-GM. In the second phase (Protocol Transfer),the SOPs were transferred to four laboratories to verify the linearity of the assay response and its interlaboratory reproducibility. After a further phase (Protocol Performance),dedicated to a training set of six anticancer drugs (adriamycin,flavopindol,morpholino-doxorubicin,pyrazoloacridine,taxol and topotecan),a model for predicting neutropenia was verified. Results showed that the assay is linear under SOP conditions,and that the in vitro endpoints used by the clinical prediction model of neutropenia are highly reproducible within and between laboratories. Valid tests represented 95% of all tests attempted. The 90% inhibitory concentration values (IC(90)) from Test A and Test B accurately predicted the human maximum tolerated dose (MTD) for five of six and for four of six myelosuppressive anticancer drugs,respectively,that were selected as prototype xenobiotics. As expected,both tests failed to accurately predict the human MTD of a drug that is a likely protoxicant. It is concluded that Test A offers significant cost advantages compared to Test B,without any loss of performance or predictive accuracy. On the basis of these results,we proposed a formal Phase II validation study using the Test A SOP for 16-18 additional xenobiotics that represent the spectrum of haematotoxic potential.
View Publication
产品类型:
产品号#:
产品名:
Kouroupis D et al. (SEP 2016)
Stem cell research 17 2 448--457
Generation of stem cell-based bioartificial anterior cruciate ligament (ACL) grafts for effective ACL rupture repair.
In the present study,we combined stem cell technology with a non-absorbable biomaterial for the reconstruction of the ruptured ACL. Towards this purpose,multipotential stromal cells derived either from subcutaneous human adipose tissue (hAT-MSCs) or from induced pluripotent stem cells (iPSCs) generated from human foreskin fibroblasts (hiPSC-MSCs) were cultured on the biomaterial for 21days in vitro to generate a 3D bioartifical ACL graft. Stem cell differentiation towards bone and ligament at the ends and central part of the biomaterial was selectively induced using either BMP-2/FGF-2 or TGF-β/FGF-2 combinations,respectively. The bioartificial ACL graft was subsequently implanted in a swine ACL rupture model in place of the surgically removed normal ACL. Four months post-implantation,the tissue engineered ACL graft generated an ACL-like tissue exhibiting morphological and biochemical characteristics resembling those of normal ACL.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Ady J et al. ( 2016)
Molecular therapy oncolytics 3 16029
Tunneling nanotubes: an alternate route for propagation of the bystander effect following oncolytic viral infection.
Tunneling nanotubes (TNTs) are ultrafine,filamentous actin-based cytoplasmic extensions which form spontaneously to connect cells at short and long-range distances. We have previously described long-range intercellular communication via TNTs connecting mesothelioma cells in vitro and demonstrated TNTs in intact tumors from patients with mesothelioma. Here,we investigate the ability of TNTs to mediate a viral thymidine kinase based bystander effect after oncolytic viral infection and administration of the nucleoside analog ganciclovir. Using confocal microscopy we assessed the ability of TNTs to propagate enhanced green fluorescent protein (eGFP),which is encoded by the herpes simplex virus NV1066,from infected to uninfected recipient cells. Using time-lapse imaging,we observed eGFP expressed in infected cells being transferred via TNTs to noninfected cells; additionally,increasing fluorescent activity in recipient cells indicated cell-to-cell transmission of the eGFP-expressing NV1066 virus had also occurred. TNTs mediated cell death as a form of direct cell-to-cell transfer following viral thymidine kinase mediated activation of ganciclovir,inducing a unique long-range form of the bystander effect through transmission of activated ganciclovir to nonvirus-infected cells. Thus,we provide proof-of-principle demonstration of a previously unknown and alternative mechanism for inducing apoptosis in noninfected recipient cells. The conceptual advance of this work is that TNTs can be harnessed for delivery of oncolytic viruses and of viral thymidine kinase activated drugs to amplify the bystander effect between cancer cells over long distances in stroma-rich tumor microenvironments.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Tiburcy M et al. (MAY 2017)
Circulation 135 19 1832--1847
Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair.
BACKGROUND Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modeling,drug screening,and heart repair. Here,we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions. METHODS We systematically investigated cell composition,matrix,and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological,functional,and transcriptome analyses to benchmark maturation of EHM. RESULTS EHM demonstrated important structural and functional properties of postnatal myocardium,including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to β-adrenergic stimulation mediated via canonical β1- and β2-adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction,cardiomyocyte hypertrophy,cardiomyocyte death,and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition,we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair. CONCLUSIONS We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined,serum-free conditions.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Calleja V et al. ( 2009)
PLoS biology 7 1 e17
Role of a novel PH-kinase domain interface in PKB/Akt regulation: structural mechanism for allosteric inhibition.
Protein kinase B (PKB/Akt) belongs to the AGC superfamily of related serine/threonine protein kinases. It is a key regulator downstream of various growth factors and hormones and is involved in malignant transformation and chemo-resistance. Full-length PKB protein has not been crystallised,thus studying the molecular mechanisms that are involved in its regulation in relation to its structure have not been simple. Recently,the dynamics between the inactive and active conformer at the molecular level have been described. The maintenance of PKB's inactive state via the interaction of the PH and kinase domains prevents its activation loop to be phosphorylated by its upstream activator,phosphoinositide-dependent protein kinase-1 (PDK1). By using a multidisciplinary approach including molecular modelling,classical biochemical assays,and Förster resonance energy transfer (FRET)/two-photon fluorescence lifetime imaging microscopy (FLIM),a detailed model depicting the interaction between the different domains of PKB in its inactive conformation was demonstrated. These findings in turn clarified the molecular mechanism of PKB inhibition by AKT inhibitor VIII (a specific allosteric inhibitor) and illustrated at the molecular level its selectivity towards different PKB isoforms. Furthermore,these findings allude to the possible function of the C-terminus in sustaining the inactive conformer of PKB. This study presents essential insights into the quaternary structure of PKB in its inactive conformation. An understanding of PKB structure in relation to its function is critical for elucidating its mode of activation and discovering how to modulate its activity. The molecular mechanism of inhibition of PKB activation by the specific drug AKT inhibitor VIII has critical implications for determining the mechanism of inhibition of other allosteric inhibitors and for opening up opportunities for the design of new generations of modulator drugs.
View Publication
产品类型:
产品号#:
72942
72944
产品名:
AKT抑制剂VIII
AKT抑制剂VIII
Li Y et al. (JAN 2016)
Journal of virology 90 7 3385--99
Ecotropic Murine Leukemia Virus Infection of Glial Progenitors Interferes with Oligodendrocyte Differentiation: Implications for Neurovirulence.
UNLABELLED Certain murine leukemia viruses (MLVs) are capable of inducing fatal progressive spongiform motor neuron disease in mice that is largely mediated by viral Env glycoprotein expression within central nervous system (CNS) glia. While the etiologic mechanisms and the glial subtypes involved remain unresolved,infection of NG2 glia was recently observed to correlate spatially and temporally with altered neuronal physiology and spongiogenesis. Since one role of NG2 cells is to serve as oligodendrocyte (OL) progenitor cells (OPCs),we examined here whether their infection by neurovirulent (FrCasE) or nonneurovirulent (Fr57E) ecotropic MLVs influenced their viability and/or differentiation. Here,we demonstrate that OPCs,but not OLs,are major CNS targets of both FrCasE and Fr57E. We also show that MLV infection of neural progenitor cells (NPCs) in culture did not affect survival,proliferation,or OPC progenitor marker expression but suppressed certain glial differentiation markers. Assessment of glial differentiation in vivo using transplanted transgenic NPCs showed that,while MLVs did not affect cellular engraftment or survival,they did inhibit OL differentiation,irrespective of MLV neurovirulence. In addition,in chimeric brains,where FrCasE-infected NPC transplants caused neurodegeneration,the transplanted NPCs proliferated. These results suggest that MLV infection is not directly cytotoxic to OPCs but rather acts to interfere with OL differentiation. Since both FrCasE and Fr57E viruses restrict OL differentiation but only FrCasE induces overt neurodegeneration,restriction of OL maturation alone cannot account for neuropathogenesis. Instead neurodegeneration may involve a two-hit scenario where interference with OPC differentiation combined with glial Env-induced neuronal hyperexcitability precipitates disease. IMPORTANCE A variety of human and animal retroviruses are capable of causing central nervous system (CNS) neurodegeneration manifested as motor and cognitive deficits. These retroviruses infect a variety of CNS cell types; however,the specific role each cell type plays in neuropathogenesis remains to be established. The NG2 glia,whose CNS functions are only now emerging,are a newly appreciated viral target in murine leukemia virus (MLV)-induced neurodegeneration. Since one role of NG2 glia is that of oligodendrocyte progenitor cells (OPCs),we investigated here whether their infection by the neurovirulent MLV FrCasE contributed to neurodegeneration by affecting OPC viability and/or development. Our results show that both neurovirulent and nonneurovirulent MLVs interfere with oligodendrocyte differentiation. Thus,NG2 glial infection could contribute to neurodegeneration by preventing myelin formation and/or repair and by suspending OPCs in a state of persistent susceptibility to excitotoxic insult mediated by neurovirulent virus effects on other glial subtypes.
View Publication
产品类型:
产品号#:
05707
产品名:
NeuroCult™化学解离试剂盒(小鼠)
Gilbert AE et al. (JAN 2011)
PloS one 6 4 e19330
Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies.
Melanoma,a potentially lethal skin cancer,is widely thought to be immunogenic in nature. While there has been much focus on T cell-mediated immune responses,limited knowledge exists on the role of mature B cells. We describe an approach,including a cell-based ELISA,to evaluate mature IgG antibody responses to melanoma from human peripheral blood B cells. We observed a significant increase in antibody responses from melanoma patients (n = 10) to primary and metastatic melanoma cells compared to healthy volunteers (n = 10) (Ptextless0.0001). Interestingly,we detected a significant reduction in antibody responses to melanoma with advancing disease stage in our patient cohort (n = 21) (Ptextless0.0001). Overall,28% of melanoma patient-derived B cell cultures (n = 1,800) compared to 2% of cultures from healthy controls (n = 600) produced antibodies that recognized melanoma cells. Lastly,a patient-derived melanoma-specific monoclonal antibody was selected for further study. This antibody effectively killed melanoma cells in vitro via antibody-mediated cellular cytotoxicity. These data demonstrate the presence of a mature systemic B cell response in melanoma patients,which is reduced with disease progression,adding to previous reports of tumor-reactive antibodies in patient sera,and suggesting the merit of future work to elucidate the clinical relevance of activating humoral immune responses to cancer.
View Publication
产品类型:
产品号#:
15024
15064
产品名:
RosetteSep™ 人B细胞富集抗体混合物
RosetteSep™人B细胞富集抗体混合物
Lu HF et al. (MAR 2012)
Biomaterials 33 8 2419--30
A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions.
Realizing the potential of human pluripotent stem cell (hPSC)-based therapy requires the development of defined scalable culture systems with efficient expansion,differentiation and isolation protocols. We report an engineered 3D microfiber system that efficiently supports long-term hPSCs self-renewal under chemically defined conditions. The unique feature of this system lies in the application of a 3D ECM-like environment in which cells are embedded,that affords: (i) uniform high cell loading density in individual cell-laden constructs (∼10 7 cells/ml); (ii) quick recovery of encapsulated cells (textless10min at 37°C) with excellent preservation of cell viability and 3D multicellular structure; (iii) direct cryopreservation of the encapsulated cells in situ in the microfibers with textgreater17-fold higher cell viability compared to those cultured on Matrigel surface; (iv) long-term hPSC propagation under chemically defined conditions. Four hPSC lines propagated in the microfibrous scaffold for 10 consecutive passages were capable of maintaining an undifferentiated phenotype as demonstrated by the expression of stem cell markers and stable karyotype invitro and the ability to form derivatives of the three germ layers both invitro and invivo. Our 3D microfibrous system has the potential for large-scale cultivation of transplantable hESCs and derivatives for clinical applications. textcopyright 2011 Elsevier Ltd.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Laguna M et al. (AUG 2015)
Sensors 15 8 19819--29
Antigen-antibody affinity for dry eye biomarkers by label free biosensing. Comparison with the ELISA technique
The specificity and affinity of antibody-antigen interactions is a fundamental way to achieve reliable biosensing responses. Different proteins involved with dry eye dysfunction: ANXA1,ANXA11,CST4,PRDX5,PLAA and S100A6; were validated as biomarkers. In this work several antibodies were tested for ANXA1,ANXA11 and PRDX5 to select the best candidates for each biomarker. The results were obtained by using Biophotonic Sensing Cells (BICELLs) as an efficient methodology for label-free biosensing and compared with the Enzyme-Linked Immuno Sorbent Assay (ELISA) technique.
View Publication