Talavera-Adame D et al. (NOV 2016)
Diabetologia 59 11 2378--2386
Effective endothelial cell and human pluripotent stem cell interactions generate functional insulin-producing beta cells.
AIMS/HYPOTHESIS Endothelial cells (ECs) play an essential role in pancreatic organogenesis. We hypothesise that effective in vitro interactions between human microvascular endothelial cells (HMECs) and human pluripotent stem cells (hPSCs) results in the generation of functional pancreatic beta cells. METHODS Embryoid bodies (EBs) derived from hPSCs were cultured alone (controls) or with ECs in collagen gels. Subsequently,cells were analysed for pancreatic beta cell markers,and then isolated and expanded. Insulin secretion in response to glucose was evaluated in vitro by static and dynamic (perifusion) assays,and in vivo by EB transplantation into immunodeficient mice. RESULTS Co-cultured EBs had a higher expression of mature beta cells markers and enhanced insulin secretion in vitro,compared with controls. In mice,transplanted EBs had higher levels of human C-peptide secretion with a significant reduction in hyperglycaemia after the selective destruction of native pancreatic beta cells. In addition,there was significant in vitro upregulation of bone morphogenetic proteins 2 and 4 (BMP-2,4) in co-cultured cells,compared with controls. CONCLUSIONS/INTERPRETATION ECs provide essential signalling in vitro,such as activation of the BMP pathway,for derivation of functional insulin-producing beta cells from hPSCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Wang W et al. (MAR 2017)
Stem cells and development 26 6 394--404
Development of Islet Organoids from H9 Human Embryonic Stem Cells in Biomimetic 3D Scaffolds.
Success in the differentiating human embryonic stem cells (hESCs) into insulin-secreting β cells raises new hopes for diabetes treatment. In this work,we demonstrated the feasibility of developing islet organoids from hESCs within biomimetic 3D scaffolds. We showed that such a 3D microenvironment is critical to the generation of pancreatic endoderm and endocrine from hESCs. The organoids formed consisted of pancreatic α,β,δ,and pancreatic polypeptide (PP) cells. A high-level co-expression of PDX1,NKX6.1,and NGN3 in these cells suggests the characteristics of pancreatic β cells. More importantly,most insulin-secreting cells generated did not express glucagon,somatostatin,or PP. The expression of mature β cell marker genes such as Pdx1,Ngn3,Insulin,MafA,and Glut2 was detected in these 3D-induced cell clusters. A high-level expression of C-peptide confirmed the de novo endogenous insulin production in these 3D induced cells. Insulin-secretory granules,an indication of β cell maturity,were detected in these cells as well. Glucose challenging experiments suggested that these cells are sensitive to glucose levels due to their elevated maturity. Exposing the cells to a high concentration of glucose induced a sharp increase in insulin secretion.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Wang Y and Adjaye J (JUN 2011)
Stem cell reviews 7 2 331--41
A cyclic AMP analog, 8-Br-cAMP, enhances the induction of pluripotency in human fibroblast cells.
Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by ectopic expression of four transcription factors. However,the efficiency of human iPS cell generation is extremely low and therefore elucidating the mechanisms underlying cellular reprogramming is of prime importance. We demonstrate that 8-Bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) improves the reprogramming efficiency of human neonatal foreskin fibroblast (HFF1) cells transduced with the four transcription factors by 2-fold. The combination of 8-Br-cAMP and VPA synergistically increases the efficiency to 6.5-fold. The effect of 8-Br-cAMP or VPA may in part be due to the up-regulation of cytokine-related and inflammatory pathways. Remarkably,the synergistic effect of 8-Br-cAMP and VPA on cellular reprogramming may be due to the transient decrease of p53 protein during the early stages of reprogramming. However,it could also be due to additional differentially regulated genes and pathways such as the up-regulation of cytokine-related,inflammatory pathways and self-renewal supporting gene,namely cyclin-encoding CCND2,and the associated genes CCNA1 and CCNE1. Conversely,we also see the down-regulation of the p53 (CCNB2,GTSE1,SERPINE1) and cell cycle (PLK1,CCNB2) pathways. Our data demonstrates that a cyclic AMP analog,8-Br-cAMP,enhances the efficiency of cellular reprogramming. In addition,8-Br-cAMP and VPA have a synergistic effect on cellular reprogramming,which may be in part due to the transient down-regulation of the p53 signaling pathway during the early stages of reprogramming.
View Publication
产品类型:
产品号#:
73602
73604
产品名:
8-Bromo-cAMP
8-Bromo-cAMP
Konorov SO et al. (AUG 2011)
Analytical chemistry 83 16 6254--6258
Absolute quantification of intracellular glycogen content in human embryonic stem cells with Raman microspectroscopy
We present a method to perform absolute quantification of glycogen in human embryonic stem cells (hESCs) in situ based on the use of Raman microspectroscopy. The proposed quantification method was validated by comparison to a commonly used commercial glycogen assay kit. With Raman microspectroscopy,we could obtain the glycogen content of hESCs faster and apparently more accurately than with the kit. In addition,glycogen distributions across a colony could be obtained. Raman spectroscopy can provide reliable estimates of the in situ glycogen content in hESCs,and this approach should also be extensible to their other biochemical constituents as well as to other cell types.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Jain AK et al. (JAN 2012)
PLoS Biology 10 2 e1001268
P53 regulates cell cycle and micrornas to promote differentiation of human embryonic stem cells
Multiple studies show that tumor suppressor p53 is a barrier to dedifferentiation; whether this is strictly due to repression of proliferation remains a subject of debate. Here,we show that p53 plays an active role in promoting differentiation of human embryonic stem cells (hESCs) and opposing self-renewal by regulation of specific target genes and microRNAs. In contrast to mouse embryonic stem cells,p53 in hESCs is maintained at low levels in the nucleus,albeit in a deacetylated,inactive state. In response to retinoic acid,CBP/p300 acetylates p53 at lysine 373,which leads to dissociation from E3-ubiquitin ligases HDM2 and TRIM24. Stabilized p53 binds CDKN1A to establish a G(1) phase of cell cycle without activation of cell death pathways. In parallel,p53 activates expression of miR-34a and miR-145,which in turn repress stem cell factors OCT4,KLF4,LIN28A,and SOX2 and prevent backsliding to pluripotency. Induction of p53 levels is a key step: RNA-interference-mediated knockdown of p53 delays differentiation,whereas depletion of negative regulators of p53 or ectopic expression of p53 yields spontaneous differentiation of hESCs,independently of retinoic acid. Ectopic expression of p53R175H,a mutated form of p53 that does not bind DNA or regulate transcription,failed to induce differentiation. These studies underscore the importance of a p53-regulated network in determining the human stem cell state.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07923
85850
85857
85870
85875
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
Naujok O and Lenzen S (SEP 2012)
Stem Cell Reviews and Reports 8 3 779--791
A critical re-evaluation of CD24-positivity of human embryonic stem cells differentiated into pancreatic progenitors.
Differentiation of embryonic stem cells (ESCs) into insulin-producing cells for cell replacement therapy of diabetes mellitus comprises the stepwise recapitulation of in vivo developmental stages of pancreatic organogenesis in an in vitro differentiation protocol. The chemical compounds IDE-1 and (-)-indolactam-V can be used to direct mouse and human ESCs through these stages to form definitive endoderm via an intermediate mesendodermal stage and finally into pancreatic endoderm. Cells of the pancreatic endoderm express the PDX1 transcription factor and contribute to all pancreatic cell types upon further in vitro or in vivo differentiation. Even though this differentiation approach is highly effective and reproducible,it generates heterogeneous populations containing PDX1-expressing pancreatic progenitors amongst other cell types. Thus,a technique to separate PDX1-expressing cells from this mixture is very desirable. Recently it has been reported that PDX1-positive pancreatic progenitors,derived from human embryonic stem cells,express the surface marker CD24. Therefore were subjected mouse and human ESCs to a small molecule differentiation approach and the expression of the surface marker CD24 was monitored in undifferentiated cells,cells committed to the definitive endoderm and cells reminiscent of the pancreatic endoderm. We observed that both mouse and human ESCs expressed CD24 in the pluripotent state,during the whole process of endoderm formation and upon further differentiation towards pancreatic endoderm. Thus CD24 is not a suitable cell surface marker for identification of PDX1-positive progenitor cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07923
85850
85857
85870
85875
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
Miyazaki T et al. ( 2012)
Nature communications 3 1236
Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells.
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have the potential to provide an infinite source of tissues for regenerative medicine. Although defined xeno-free media have been developed,culture conditions for reliable propagation of hESCs still require considerable improvement. Here we show that recombinant E8 fragments of laminin isoforms (LM-E8s),which are the minimum fragments conferring integrin-binding activity,promote greater adhesion of hESCs and hiPSCs than do Matrigel and intact laminin isoforms. Furthermore,LM-E8s sustain long-term self-renewal of hESCs and hiPSCs in defined xeno-free media with dissociated cell passaging. We successfully maintained three hESC and two hiPSC lines on LM-E8s in three defined media for 10 passages. hESCs maintained high level expression of pluripotency markers,had a normal karyotype after 30 passages and could differentiate into all three germ layers. This culture system allows robust proliferation of hESCs and hiPSCs for therapeutic applications.
View Publication
PKD1 mutation perturbs morphogenesis in tubular epithelial organoids derived from human pluripotent stem cells
Autosomal dominant polycystic kidney disease (ADPKD) is the most common renal genetic disease,with most patients carrying mutations in PKD1. The main feature is the formation of bilateral renal cysts,leading to end stage renal failure in a significant proportion of those affected. Despite recent advances made in understanding ADPKD,there are currently no effective curative therapies. The emergence of human induced pluripotent stem cell (hiPSC)-derived kidney disease models has led to renewed hope that more physiological systems will allow for the development of novel treatments. hiPSC-derived organoid models have been used to recapitulate ADPKD,however they present numerous limitations which remain to be addressed. In the present study,we report an efficient method for generating organoids containing a network of polarised and ciliated epithelial tubules. PKD1 null (PKD1?/?) organoids spontaneously develop dilated tubules,recapitulating early ADPKD cystogenesis. Furthermore,PKD1?/? tubules present primary cilia defects when dilated. Our model could therefore serve as a valuable tool to study early ADPKD cystogenesis and to develop novel therapies.Supplementary InformationThe online version contains supplementary material available at 10.1038/s41598-025-94855-9.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
S. Peltonen et al. (Nov 2024)
Fluids and Barriers of the CNS 21 1
Mutated LRRK2 induces a reactive phenotype and alters migration in human iPSC-derived pericyte-like cells
Pericytes play a crucial role in controlling inflammation and vascular functions in the central nervous system,which are disrupted in Parkinson’s disease (PD). Still,there is a lack of studies on the impact of pericytes on neurodegenerative diseases,and their involvement in the pathology of PD is unclear. Our objective was to investigate the molecular and functional differences between healthy pericytes and pericytes with the LRRK2 G2019S mutation,which is one of the most common mutations associated with PD. Our study employed pericyte-like cells obtained from induced pluripotent stem cells produced from PD patients with the LRRK2 G2019S mutation as well as from healthy individuals. We examined the gene expression profiles of the cells and analyzed how the alterations reflect on their functionality. We have shown differences in the expression of genes related to inflammation and angiogenesis. Furthermore,we observe modified migration speed in PD pericyte-like cells as well as enhanced secretion of inflammatory mediators,such as soluble VCAM-1 and MCP-1,in these pericyte-like cells following exposure to proinflammatory stimuli. In summary,our findings support the notion that pericytes play a role in the inflammatory and vascular changes observed in PD. Further investigation of pericytes could provide valuable insight into understanding the pathogenesis of PD. The online version contains supplementary material available at 10.1186/s12987-024-00592-y.
View Publication
产品类型:
产品号#:
05270
05275
产品名:
STEMdiff™ APEL™2 培养基
STEMdiff™ APEL™2 培养基
G. Y. Lee et al. (Apr 2025)
BMC Research Notes 18 2
Comprehensive single-cell RNA-sequencing study of Tollip deficiency effect in IL-13-stimulated human airway epithelial cells
Toll-interacting protein (Tollip) suppresses excessive pro-inflammatory signaling,but its function in airway epithelial responses to IL-13,a key mediator in allergic diseases,remains unclear. This study investigates Tollip knockdown (TKD) effects in primary human airway epithelial cells using single-cell RNA sequencing,providing the first single-cell analysis of TKD and the first exploring its interaction with IL-13. IL-13 treatment upregulated key genes,including SPDEF,MUC5AC,POSTN,ALOX15,and CCL26,confirming IL-13’s effects and validating our methods. IL-13 reduced TNF-α signaling and epithelial-mesenchymal transition in certain cell types,suggesting a dual role in promoting type 2 inflammation while suppressing Th1-driven inflammation. Tollip deficiency alone significantly amplified TNF-α signaling and inflammatory pathways in goblet,club,and suprabasal cells. Comparisons between TKDIL13 vs IL13 and TKD vs CTR revealed that IL-13 does not substantially alter Tollip deficiency response in most cell types,reinforcing findings in TKD vs CTR. Tollip deficiency alters the response to IL-13 in a cell-type-specific manner,strongly downregulating TNF-α signaling in goblet cells but only weakly in basal and club cells. Tollip deficiency enhances IL-13’s suppression of Th1 inflammatory responses in goblet cells. These novel insights in Tollip-IL-13 interactions offer potential therapeutic targets for asthma and related diseases. The online version contains supplementary material available at 10.1186/s13104-025-07255-7.
View Publication