Modulating notochordal differentiation of human induced pluripotent stem cells using natural nucleus pulposus tissue matrix
Human induced pluripotent stem cells (hiPSCs) can differentiate into notochordal cell (NC)-like cells when cultured in the presence of natural porcine nucleus pulposus (NP) tissue matrix. The method promises massive production of high-quality,functional cells to treat degenerative intervertebral discs (IVDs). Based on our previous work,we further examined the effect of cell-NP matrix contact and culture medium on the differentiation,and further assessed the functional differentiation ability of the generated NC-like. The study showed that direct contact between hiPSCs and NP matrix can promote the differentiation yield,whilst both the contact and non-contact cultures can generate functional NC-like cells. The generated NC-like cells are highly homogenous regarding the expression of notochordal marker genes. A culture medium containing a cocktail of growth factors (FGF,EGF,VEGF and IGF-1) also supported the notochordal differentiation in the presence of NP matrix. The NC-like cells showed excellent functional differentiation ability to generate NP-like tissue which was rich in aggrecan and collagen type II; and particularly,the proteoglycan to collagen content ratio was as high as 12.5-17.5 which represents a phenotype close to NP rather than hyaline cartilage. Collectively,the present study confirmed the effectiveness and flexibility of using natural NP tissue matrix to direct notochordal differentiation of hiPSCs,and the potential of using the generated NC-like cells for treating IVD degeneration.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Yan H-J et al. (JAN 2016)
Experimental Cell Research 340 2 227--237
The effects of LSD1 inhibition on self-renewal and differentiation of human induced pluripotent stem cells
Human induced pluripotent stem cells (hiPSCs) are capable of unlimited self-renewal and can generate nearly all cells in the body. Changes induced by different LSD1 activities on the regulation of hiPSC self-renewal and differentiation and the mechanism underlying such changes were determined. We used two different LSD1 inhibitors (phenelzine sulfate and tranylcypromine) and RNAi technique to inhibit LSD1 activity,and we obtained hiPSCs showing 71.3%,53.28%,and 31.33% of the LSD1 activity in normal hiPSCs. The cells still maintained satisfactory self-renewal capacity when LSD1 activity was at 71.3%. The growth rate of hiPSCs decreased and cells differentiated when LSD1 activity was at approximately 53.28%. The hiPSCs were mainly arrested in the G0/G1 phase and simultaneously differentiated into endodermal tissue when LSD1 activity was at 31.33%. Teratoma experiments showed that the downregulation of LSD1 resulted in low teratoma volume. When LSD1 activity was below 50%,pluripotency of hiPSCs was impaired,and the teratomas mainly comprised endodermal and mesodermal tissues. This phenomenon was achieved by regulating the critical balance between histone methylation and demethylation at regulatory regions of several key pluripotent and developmental genes.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
He X et al. (MAY 2016)
Nucleic acids research 44 9 e85
Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.
CRISPR/Cas9-induced site-specific DNA double-strand breaks (DSBs) can be repaired by homology-directed repair (HDR) or non-homologous end joining (NHEJ) pathways. Extensive efforts have been made to knock-in exogenous DNA to a selected genomic locus in human cells; which,however,has focused on HDR-based strategies and was proven inefficient. Here,we report that NHEJ pathway mediates efficient rejoining of genome and plasmids following CRISPR/Cas9-induced DNA DSBs,and promotes high-efficiency DNA integration in various human cell types. With this homology-independent knock-in strategy,integration of a 4.6 kb promoterless ires-eGFP fragment into the GAPDH locus yielded up to 20% GFP+ cells in somatic LO2 cells,and 1.70% GFP+ cells in human embryonic stem cells (ESCs). Quantitative comparison further demonstrated that the NHEJ-based knock-in is more efficient than HDR-mediated gene targeting in all human cell types examined. These data support that CRISPR/Cas9-induced NHEJ provides a valuable new path for efficient genome editing in human ESCs and somatic cells.
View Publication
RNA-binding protein SAMD4A targets FGF2 to regulate cardiomyocyte lineage specification from human embryonic stem cells
BackgroundRNA-binding proteins (RBPs) are essential in cardiac development. However,a large of them have not been characterized during the process.MethodsWe applied the human embryonic stem cells (hESCs) differentiated into cardiomyocytes model and constructed SAMD4A-knockdown/overexpression hESCs to investigate the role of SAMD4A in cardiomyocyte lineage specification.ResultsSAMD4A,an RBP,exhibits increased expression during early heart development. Suppression of SAMD4A inhibits the proliferation of hESCs,impedes cardiac mesoderm differentiation,and impairs the function of hESC-derived cardiomyocytes. Correspondingly,forced expression of SAMD4A enhances proliferation and promotes cardiomyogenesis. Mechanistically,SAMD4A specifically binds to FGF2 via a specific CNGG/CNGGN motif,stabilizing its mRNA and enhancing translation,thereby upregulating FGF2 expression,which subsequently modulates the AKT signaling pathway and regulates cardiomyocyte lineage differentiation. Additionally,supplementation of FGF2 can rescue the proliferation defect of hESCs in the absence of SAMD4A.ConclusionsOur study demonstrates that SAMD4A orchestrates cardiomyocyte lineage commitment through the post-transcriptional regulation of FGF2 and modulation of AKT signaling. These findings not only underscore the essential role of SAMD4A in cardiac organogenesis,but also provide critical insights into the molecular mechanisms underlying heart development,thereby informing potential therapeutic strategies for congenital heart disease.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13287-025-04269-7.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
A. Leonteva et al. (Jul 2025)
Cells 14 14
The Activity of Human NK Cells Towards 3D Heterotypic Cellular Tumor Model of Breast Cancer
Due to the complexity of modeling tumor-host interactions within the tumor microenvironment in vitro,we developed a 3D heterotypic cellular breast cancer (BC) model. We generated spheroid models using MCF7,MDA-MB-231,and SK-BR-3 cell lines alongside cancer-associated (BrC4f) and normal (BN120f) fibroblasts in ultra-low attachment plates. Stromal spheroids (3Df) were formed using a liquid overlay technique (graphical abstract). The YT cell line and peripheral blood NK (PB-NK) cells were used as immune components in our 3D model. In this study,we showed that stromal cells promoted tumor cell aggregation into spheroids,regardless of the initial proliferation rates,with NK cells accumulating in fibroblast-rich regions. The presence of CAFs within the model induced alterations in the expression levels of MICA/B and PD-L1 by tumor cells within the 3D-2 model. The feasibility of utilizing a 3D cell BC model in combination with cytokines and PB-NKs was evaluated. We observed that IL-15 and IL-2 enhanced NK cell activity within spheroids,whereas TGFβ had varying effects on proliferation depending on the cell type. Stimulation with IL-2 and IL-15 or TGFβ1 altered PB-NK markers and stimulated their differentiation into ILC1-like cells in 3D models. These findings underscore the regulatory function of CAFs in shaping the response of the tumor microenvironment to immunotherapeutic interventions.
View Publication
产品类型:
产品号#:
15025
15065
产品名:
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
S. Dolma et al. (mar 2003)
Cancer cell 3 3 285--96
Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells.
We used synthetic lethal high-throughput screening to interrogate 23,550 compounds for their ability to kill engineered tumorigenic cells but not their isogenic normal cell counterparts. We identified known and novel compounds with genotype-selective activity,including doxorubicin,daunorubicin,mitoxantrone,camptothecin,sangivamycin,echinomycin,bouvardin,NSC146109,and a novel compound that we named erastin. These compounds have increased activity in the presence of hTERT,the SV40 large and small T oncoproteins,the human papillomavirus type 16 (HPV) E6 and E7 oncoproteins,and oncogenic HRAS. We found that overexpressing hTERT and either E7 or LT increased expression of topoisomerase 2alpha and that overexpressing RAS(V12) and ST both increased expression of topoisomerase 1 and sensitized cells to a nonapoptotic cell death process initiated by erastin.
View Publication
产品类型:
产品号#:
100-0544
100-0545
产品名:
Erastin
Erastin
Park S-W et al. (DEC 2010)
Blood 116 25 5762--72
Efficient differentiation of human pluripotent stem cells into functional CD34+ progenitor cells by combined modulation of the MEK/ERK and BMP4 signaling pathways.
Differentiation of human pluripotent stem cells (hPSCs) into functional cell types is a crucial step in cell therapy. In the present study,we demonstrate that functional CD34(+) progenitor cells can be efficiently produced from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) by combined modulation of 2 signaling pathways. A higher proportion of CD34(+) cells (∼ 20%) could be derived from hPSCs by inhibition of mitogen-activated protein kinase (MAPK) extracellular signal-regulated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling and activation of bone morphogenic protein-4 (BMP4) signaling. hPSC-derived CD34(+) progenitor cells further developed to endothelial and smooth muscle cells with functionality. Moreover,they contributed directly to neovasculogenesis in ischemic mouse hind limbs,thereby resulting in improved blood perfusion and limb salvage. Our results suggest that combined modulation of signaling pathways may be an efficient means of differentiating hPSCs into functional CD34(+) progenitor cells.
View Publication
Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells.
The induction of senescence-like growth arrest has emerged as a putative contributor to the anticancer effects of chemotherapeutic agents. Clinical trials are underway to evaluate the efficacy of inhibitors for class I and II histone deacetylases to treat malignancies. However,a potential antiproliferative effect of inhibitor for Sirt1,which is an NAD(+)-dependent deacetylase and belongs to class III histone deacetylases,has not yet been explored. Here,we show that Sirt1 inhibitor,Sirtinol,induced senescence-like growth arrest characterized by induction of senescence-associated beta-galactosidase activity and increased expression of plasminogen activator inhibitor 1 in human breast cancer MCF-7 cells and lung cancer H1299 cells. Sirtinol-induced senescence-like growth arrest was accompanied by impaired activation of mitogen-activated protein kinase (MAPK) pathways,namely,extracellular-regulated protein kinase,c-jun N-terminal kinase and p38 MAPK,in response to epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I). Active Ras was reduced in Sirtinol-treated senescent cells compared with untreated cells. However,tyrosine phosphorylation of the receptors for EGF and IGF-I and Akt/PKB activation were unaltered by Sirtinol treatment. These results suggest that inhibitors for Sirt1 may have anticancer potential,and that impaired activation of Ras-MAPK pathway might take part in a senescence-like growth arrest program induced by Sirtinol.
View Publication
产品类型:
产品号#:
73822
73824
产品名:
西尔替诺(Sirtinol)
Leydon C et al. (OCT 2013)
Tissue Engineering Part A 19 19-20 2233--2241
Human embryonic stem cell-derived epithelial cells in a novel in vitro model of vocal mucosa.
A satisfactory in vitro model of vocal fold mucosa does not exist,thus precluding a systematic,controlled study of vocal fold biology and biomechanics. We sought to create a valid,reproducible three-dimensional (3D) in vitro model of human origin of vocal fold mucosa of human origin. We hypothesized that coculture of human embryonic stem cell (hESC)-derived simple epithelial cells with primary vocal fold fibroblasts under appropriate conditions would elicit morphogenesis of progenitor cells into vocal fold epithelial-like cells and creation of a basement membrane. Using an in vitro prospective study design,hESCs were differentiated into cells that coexpressed the simple epithelial cell marker,keratin 18 (K18),and the transcription factor,p63. These simple epithelial cells were cocultured with primary vocal fold fibroblasts seeded in a collagen gel scaffold. The cells were cultured for 3 weeks in a keratinocyte medium at an air–liquid interface. After that time,the engineered mucosa demonstrated a stratified,squamous epithelium and a continuous basement membrane recapitulating the key morphologic and phenotypic characteristics of native vocal fold mucosa. hESC-derived epithelial cells exhibited positive staining for vocal fold stratified,squamous epithelial markers,keratin 13 (K13) and 14 (K14),as well as tight junctions,adherens junctions,gap junctions,and desmosomes. Despite the presence of components critical for epithelial structural integrity,the epithelium demonstrated greater permeability than native tissue indicating compromised functional integrity. While further work is warranted to improve functional barrier integrity,this study demonstrates that hESC-derived epithelial progenitor cells can be engineered to create a replicable 3D in vitro model of vocal fold mucosa featuring a multilayered,terminally differentiated epithelium.
View Publication