Ma R et al. (FEB 2017)
Thyroid : official journal of the American Thyroid Association 27 2 292--299
TAZ Induction Directs Differentiation of Thyroid Follicular Cells from Human Embryonic Stem Cells.
OBJECTIVE The differentiation program for human thyroid follicular cells (TFCs) relies on the interplay between sequence-specific transcription factors and transcriptional co-regulators. Transcriptional co-activator with PDZ-binding motif (TAZ) is a co-activator that regulates several transcription factors,including PAX8 and NKX2-1,which play a central role in thyroid-specific gene transcription. TAZ and PAX8/NKX2-1 are co-expressed in the nuclei of thyroid cells,and TAZ interacts directly with both PAX8 and NKX2-1,leading to their enhanced transcriptional activity on the thyroglobulin (TG) promoter and additional genes. METHODS The use of a small molecule,ethacridine,recently identified as a TAZ activator,in the differentiation of thyroid cells from human embryonic stem (hES) cells was studied. First,endodermal cells were derived from hES cells using Activin A,followed by induction of differentiation into thyroid cells directed by ethacridine and thyrotropin (TSH). RESULTS The expression of TAZ was increased in the Activin A-derived endodermal cells by ethacridine in a dose-dependent manner and followed by increases in PAX8 and NKX2-1 when assessed by both quantitative polymerase chain reaction and immunostaining. Following further differentiation with the combination of ethacridine and TSH,the thyroid-specific genes TG,TPO,TSHR,and NIS were all induced in the differentiated hES cells. When these cells were cultured with extracellular matrix-coated dishes,thyroid follicle formation and abundant TG protein expression were observed. Furthermore,such hES cell-derived thyroid follicles showed a marked TSH-induced and dose-dependent increase in radioiodine uptake and protein-bound iodine accumulation. CONCLUSION These data show that fully functional human thyroid cells can be derived from hES cells using ethacridine,a TAZ activator,which induces thyroid-specific gene expression and promotes thyroid cell differentiation from the hES cells. These studies again demonstrate the importance of transcriptional regulation in thyroid cell development. This approach also yields functional human thyrocytes,without any gene transfection or complex culture conditions,by directly manipulating the transcriptional machinery without interfering with intermediate signaling events.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Vittet D et al. (NOV 1996)
Blood 88 9 3424--31
Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps.
The mechanisms involved in the regulation of vasculogenesis still remain unclear in mammals. Totipotent embryonic stem (ES) cells may represent a suitable in vitro model to study molecular events involved in vascular development. In this study,we followed the expression kinetics of a relatively large set of endothelial-specific markers in ES-derived embryoid bodies (EBs). Results of both reverse transcription-polymerase chain reaction and/or immunofluorescence analysis show that a spontaneous endothelial differentiation occurs during EBs development. ES-derived endothelial cells express a full range of cell lineage-specific markers: platelet endothelial cell adhesion molecule (PECAM),Flk-1,tie-1,tie-2,vascular endothelial (VE) cadherin,MECA-32,and MEC-14.7. Analysis of the kinetics of endothelial marker expression allows the distinction of successive maturation steps. Flk-1 was the first to be detected; its mRNA is apparent from day 3 of differentiation. PECAM and tie-2 mRNAs were found to be expressed only from day 4,whereas VE-cadherin and tie-1 mRNAs cannot be detected before day 5. Immunofluorescence stainings of EBs with antibodies directed against Flk-1,PECAM,VE-cadherin,MECA-32,and MEC-14.7 confirmed that the expression of these antigens occurs at different steps of endothelial cell differentiation. The addition of an angiogenic growth factor mixture including erythropoietin,interleukin-6,fibroblast growth factor 2,and vascular endothelial growth factor in the EB culture medium significantly increased the development of primitive vascular-like structures within EBs. These results indicate that this in vitro system contains a large part of the endothelial cell differentiation program and constitutes a suitable model to study the molecular mechanisms involved in vasculogenesis.
View Publication
产品类型:
产品号#:
06902
06952
00321
00322
00323
00324
00325
产品名:
Sun N et al. (SEP 2009)
Proceedings of the National Academy of Sciences of the United States of America 106 37 15720--5
Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells.
Ectopic expression of transcription factors can reprogram somatic cells to a pluripotent state. However,most of the studies used skin fibroblasts as the starting population for reprogramming,which usually take weeks for expansion from a single biopsy. We show here that induced pluripotent stem (iPS) cells can be generated from adult human adipose stem cells (hASCs) freshly isolated from patients. Furthermore,iPS cells can be readily derived from adult hASCs in a feeder-free condition,thereby eliminating potential variability caused by using feeder cells. hASCs can be safely and readily isolated from adult humans in large quantities without extended time for expansion,are easy to maintain in culture,and therefore represent an ideal autologous source of cells for generating individual-specific iPS cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Nizzardo M et al. (NOV 2010)
Cellular and molecular life sciences : CMLS 67 22 3837--47
Human motor neuron generation from embryonic stem cells and induced pluripotent stem cells.
Motor neuron diseases (MNDs) are a group of neurological disorders that selectively affect motor neurons. There are currently no cures or efficacious treatments for these diseases. In recent years,significant developments in stem cell research have been applied to MNDs,particularly regarding neuroprotection and cell replacement. However,a consistent source of motor neurons for cell replacement is required. Human embryonic stem cells (hESCs) could provide an inexhaustible supply of differentiated cell types,including motor neurons that could be used for MND therapies. Recently,it has been demonstrated that induced pluripotent stem (iPS) cells may serve as an alternative source of motor neurons,since they share ES characteristics,self-renewal,and the potential to differentiate into any somatic cell type. In this review,we discuss several reproducible methods by which hESCs or iPS cells are efficiently isolated and differentiated into functional motor neurons,and possible clinical applications.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Belkind-Gerson J et al. (JAN 2013)
Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society 25 1 61--9.e7
Nestin-expressing cells in the gut give rise to enteric neurons and glial cells.
BACKGROUND Neuronal stem cells (NSCs) are promising for neurointestinal disease therapy. Although NSCs have been isolated from intestinal musclularis,their presence in mucosa has not been well described. Mucosa-derived NSCs are accessible endoscopically and could be used autologously. Brain-derived Nestin-positive NSCs are important in endogenous repair and plasticity. The aim was to isolate and characterize mucosa-derived NSCs,determine their relationship to Nestin-expressing cells and to demonstrate their capacity to produce neuroglial networks in vitro and in vivo. METHODS Neurospheres were generated from periventricular brain,colonic muscularis (Musc),and mucosa-submucosa (MSM) of mice expressing green fluorescent protein (GFP) controlled by the Nestin promoter (Nestin-GFP). Neuronal stem cells were also grown as adherent colonies from intestinal mucosal organoids. Their differentiation potential was assessed using immunohistochemistry using glial and neuronal markers. Brain and gut-derived neurospheres were transplanted into explants of chick embryonic aneural hindgut to determine their fate. KEY RESULTS Musc- and MSM-derived neurospheres expressed Nestin and gave rise to cells of neuronal,glial,and mesenchymal lineage. Although Nestin expression in tissue was mostly limited to glia co-labelled with glial fibrillary acid protein (GFAP),neurosphere-derived neurons and glia both expressed Nestin in vitro,suggesting that Nestin+/GFAP+ glial cells may give rise to new neurons. Moreover,following transplantation into aneural colon,brain- and gut-derived NSCs were able to differentiate into neurons. CONCLUSIONS & INFERENCES Nestin-expressing intestinal NSCs cells give rise to neurospheres,differentiate into neuronal,glial,and mesenchymal lineages in vitro,generate neurons in vivo and can be isolated from mucosa. Further studies are needed for exploring their potential for treating neuropathies.
View Publication
产品类型:
产品号#:
05700
05701
05702
05703
05704
05715
产品名:
NeuroCult™ 基础培养基(小鼠&大鼠)
NeuroCult™ 扩增添加物 (小鼠&大鼠)
NeuroCult™ 扩增试剂盒 (小鼠&大鼠)
NeuroCult™ 分化添加物 (小鼠&大鼠)
NeuroCult™ 分化试剂盒 (小鼠&大鼠)
NeuroCult™成年中枢神经系统(CNS)组织酶解试剂盒(小鼠和大鼠)
Cao N et al. ( 2015)
1212 113--125
Generation, expansion, and differentiation of cardiovascular progenitor cells from human pluripotent stem cells.
Cardiovascular progenitor cells (CVPCs) derived from human embryonic stem cells and human induced pluripotent stem cells represent an invaluable potential source for the study of early embryonic cardiovascular development and stem cell-based therapies for congenital and acquired heart diseases. To fully realize their values,it is essential to establish an efficient and stable differentiation system for the induction of these pluripotent stem cells (PSCs) into the CVPCs and robustly expand them in culture,and then further differentiate these CVPCs into multiple cardiovascular cell types. Here we describe the protocols for efficient derivation,expansion,and differentiation of CVPCs from hPSCs in a chemically defined medium under feeder- and serum-free culture conditions.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07920
85850
85857
85870
85875
07922
产品名:
ACCUTASE™
mTeSR™1
mTeSR™1
ACCUTASE™
Su RJ et al. ( 2014)
1357 1341 57--69
Generation of iPS Cells from Human Peripheral Blood Mononuclear Cells Using Episomal Vectors
Peripheral blood is the easy-to-access,minimally invasive,and the most abundant cell source to use for cell reprogramming. The episomal vector is among the best approaches for generating integration-free induced pluripotent stem (iPS) cells due to its simplicity and affordability. Here we describe the detailed protocol for the efficient generation of integration-free iPS cells from peripheral blood mononuclear cells. With this optimized protocol,one can readily generate hundreds of iPS cell colonies from 1 ml of peripheral blood.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
05940
27310
85850
85857
85870
85875
产品名:
缺氧小室
mTeSR™1
mTeSR™1
C. Xu et al. ( 2004)
Stem cells (Dayton,Ohio) 22 6 972--80
Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth.
Human embryonic stem cells (hESCs) have the potential to generate multiple cell types and hold promise for future therapeutic applications. Although undifferentiated hESCs can proliferate indefinitely,hESC derivatives significantly downregulate telomerase and have limited replication potential. In this study we examine whether the replicative lifespan of hESC derivatives can be extended by ectopic expression of human telomerase reverse transcriptase (hTERT),the catalytic component of the telomerase complex. To this end,we have derived HEF1 cells,a fibroblast-like cell type,differentiated from hESCs. Infection of HEF1 cells with a retrovirus expressing hTERT extends their replicative capacity,resulting in immortal human HEF1-hTERT cells. HEF1-hTERT cells can be used to produce conditioned medium (CM) capable of supporting hESC growth under feeder-free conditions. Cultures maintained in HEF1-CM show characteristics similar to mouse embryonic fibroblast CM control cultures,including morphology,surface marker and transcription factor expression,telomerase activity,differentiation,and karyotypic stability. In addition,HEF1-hTERT cells have the capacity to differentiate into cells of the osteogenic lineage. These results suggest that immortalized cell lines can be generated from hESCs and that cells derived from hESCs can be used to support their own growth,creating a genotypically homogeneous system for the culture of hESCs.
View Publication
产品类型:
产品号#:
07181
产品名:
Wang J et al. (DEC 2016)
Molecular brain 9 1 12
Endothelial progenitor cells and neural progenitor cells synergistically protect cerebral endothelial cells from Hypoxia/reoxygenation-induced injury via activating the PI3K/Akt pathway.
BACKGROUND Protection of cerebral endothelial cells (ECs) from hypoxia/reoxygenation (H/R)-induced injury is an important strategy for treating ischemic stroke. In this study,we investigated whether co-culture with endothelial progenitor cells (EPCs) and neural progenitor cells (NPCs) synergistically protects cerebral ECs against H/R injury and the underlying mechanism. RESULTS EPCs and NPCs were respectively generated from inducible pluripotent stem cells. Human brain ECs were used to produce an in vitro H/R-injury model. Data showed: 1) Co-culture with EPCs and NPCs synergistically inhibited H/R-induced reactive oxygen species (ROS) over-production,apoptosis,and improved the angiogenic and barrier functions (tube formation and permeability) in H/R-injured ECs. 2) Co-culture with NPCs up-regulated the expression of vascular endothelial growth factor receptor 2 (VEGFR2). 3) Co-culture with EPCs and NPCs complementarily increased vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) levels in conditioned medium,and synergistically up-regulated the expression of p-Akt/Akt and p-Flk1/VEGFR2 in H/R-injured ECs. 4) Those effects could be decreased or abolished by inhibition of both VEGFR2 and tyrosine kinase B (TrkB) or phosphatidylinositol-3-kinase (PI3K). CONCLUSIONS Our data demonstrate that EPCs and NPCs synergistically protect cerebral ECs from H/R-injury,via activating the PI3K/Akt pathway which mainly depends on VEGF and BDNF paracrine.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Bielawska-Pohl A et al. (MAY 2005)
Journal of immunology (Baltimore,Md. : 1950) 174 9 5573--82
Human NK cells lyse organ-specific endothelial cells: analysis of adhesion and cytotoxic mechanisms.
Human organ-specific microvascular endothelial cells (ECs) were established and used in the present study to investigate their susceptibility to natural killer cell line (NKL)-induced lysis. Our data indicate that although IL-2-stimulated NKL (NKL2) cells adhered to the human peripheral (HPLNEC.B3),mesenteric lymph node (HMLNEC),brain (HBrMEC),and lung (HLMEC) and skin (HSkMEC.2) ECs,they significantly killed these cells quite differently. A more pronounced lysis of OSECs was also observed when IL-2-stimulated,purified peripheral blood NK cells were used as effector cells. In line with the correlation observed between adhesion pattern and the susceptibility to NKL2-mediated killing,we demonstrated using different chelators that the necessary adhesion step was governed by an Mg(2+)-dependent,but Ca(2+)-independent,mechanism as opposed to the subsequent Ca(2+)-dependent killing. To identify the cytotoxic pathway used by NKL2 cells,the involvement of the classical and alternate pathways was examined. Blocking of the Ca(2+)-dependent cytotoxicity pathway by EGTA/MgCl(2) significantly inhibited endothelial target cell killing,suggesting a predominant role for the perforin/granzyme pathway. Furthermore,using confocal microscopy,we demonstrated that the interaction between NKL2 effectors and ECs induced cytochrome c release and Bid translocation in target cells,indicating an involvement of the mitochondrial pathway in NKL2-induced EC death. In addition,although all tested cells were sensitive to the cytotoxic action of TNF,no susceptibility to TRAIL or anti-Fas mAb was observed. The present studies emphasize that human NK cell cytotoxicity toward ECs may be a potential target to block vascular injury.
View Publication
产品类型:
产品号#:
15025
15065
产品名:
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
Meierovics AI et al. (OCT 2016)
The Journal of experimental medicine
MAIT cells promote inflammatory monocyte differentiation into dendritic cells during pulmonary intracellular infection.
Mucosa-associated invariant T (MAIT) cells are a unique innate T cell subset that is necessary for rapid recruitment of activated CD4(+) T cells to the lungs after pulmonary F. tularensis LVS infection. Here,we investigated the mechanisms behind this effect. We provide evidence to show that MAIT cells promote early differentiation of CCR2-dependent monocytes into monocyte-derived DCs (Mo-DCs) in the lungs after F. tularensis LVS pulmonary infection. Adoptive transfer of Mo-DCs to MAIT cell-deficient mice (MR1(-/-) mice) rescued their defect in the recruitment of activated CD4(+) T cells to the lungs. We further demonstrate that MAIT cell-dependent GM-CSF production stimulated monocyte differentiation in vitro,and that in vivo production of GM-CSF was delayed in the lungs of MR1(-/-) mice. Finally,GM-CSF-deficient mice exhibited a defect in monocyte differentiation into Mo-DCs that was phenotypically similar to MR1(-/-) mice. Overall,our data demonstrate that MAIT cells promote early pulmonary GM-CSF production,which drives the differentiation of inflammatory monocytes into Mo-DCs. Further,this delayed differentiation of Mo-DCs in MR1(-/-) mice was responsible for the delayed recruitment of activated CD4(+) T cells to the lungs. These findings establish a novel mechanism by which MAIT cells function to promote both innate and adaptive immune responses.
View Publication
产品类型:
产品号#:
18970
18970RF
产品名:
EasySep™小鼠CD11b正选试剂盒II
RoboSep™ 小鼠CD11b正选试剂盒II
Rosenberg G (AUG 2007)
Cellular and molecular life sciences : CMLS 64 16 2090--103
The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees?
After more than 40 years of clinical use,the mechanisms of action of valproate in epilepsy,bipolar disorder and migraine are still not fully understood. However,recent findings reviewed here shed new light on the cellular effects of valproate. Beyond the enhancement of gamma-aminobutyric acid-mediated neurotransmission,valproate has been found to affect signalling systems like the Wnt/beta-catenin and ERK pathways and to interfere with inositol and arachidonate metabolism. Nevertheless,the clinical relevance of these effects is not always clear. Valproate treatment also produces marked alterations in the expression of multiple genes,many of which are involved in transcription regulation,cell survival,ion homeostasis,cytoskeletal modifications and signal transduction. These alterations may well be relevant to the therapeutic effects of valproate,and result from its enhancement of activator protein-1 DNA binding and direct inhibition of histone deacetylases,and possibly additional,yet unknown,mechanism(s). Most likely,both immediate biochemical and longer-term genomic influences underlie the effects of valproate in all three indications.
View Publication