Rigamonti A et al. (JUN 2016)
Stem Cell Reports 6 6 993--1008
Large-scale production of mature neurons from human pluripotent stem cells in a three-dimensional suspension culture system
Human pluripotent stem cells (hPSCs) offer a renewable source of cells that can be expanded indefinitely and differentiated into virtually any type of cell in the human body,including neurons. This opens up unprecedented possibilities to study neuronal cell and developmental biology and cellular pathology of the nervous system,provides a platform for the screening of chemical libraries that affect these processes,and offers a potential source of transplantable cells for regenerative approaches to neurological disease. However,defining protocols that permit a large number and high yield of neurons has proved difficult. We present differentiation protocols for the generation of distinct subtypes of neurons in a highly reproducible manner,with minimal experiment-to-experiment variation. These neurons form synapses with neighboring cells,exhibit spontaneous electrical activity,and respond appropriately to depolarization. hPSC-derived neurons exhibit a high degree of maturation and survive in culture for up to 4-5 months,even without astrocyte feeder layers.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Noormohammadi A et al. (NOV 2016)
Nature Communications 7 13649
Somatic increase of CCT8 mimics proteostasis of human pluripotent stem cells and extends C. elegans lifespan
Human embryonic stem cells can replicate indefinitely while maintaining their undifferentiated state and,therefore,are immortal in culture. This capacity may demand avoidance of any imbalance in protein homeostasis (proteostasis) that would otherwise compromise stem cell identity. Here we show that human pluripotent stem cells exhibit enhanced assembly of the TRiC/CCT complex,a chaperonin that facilitates the folding of 10% of the proteome. We find that ectopic expression of a single subunit (CCT8) is sufficient to increase TRiC/CCT assembly. Moreover,increased TRiC/CCT complex is required to avoid aggregation of mutant Huntingtin protein. We further show that increased expression of CCT8 in somatic tissues extends Caenorhabditis elegans lifespan in a TRiC/CCT-dependent manner. Ectopic expression of CCT8 also ameliorates the age-associated demise of proteostasis and corrects proteostatic deficiencies in worm models of Huntington's disease. Our results suggest proteostasis is a common principle that links organismal longevity with hESC immortality.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07174
07920
85850
85857
85870
85875
05835
05839
07922
100-0485
100-1077
产品名:
ACCUTASE™
mTeSR™1
mTeSR™1
STEMdiff™ 神经诱导培养基
STEMdiff™ 神经诱导培养基
ACCUTASE™
温和细胞解离试剂
ReLeSR™
Burton P et al. (DEC 2010)
The Biochemical journal 432 3 575--84
Erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) blocks differentiation and maintains the expression of pluripotency markers in human embryonic stem cells.
hESCs (human embryonic stem cells) have enormous potential for use in pharmaceutical development and therapeutics; however,to realize this potential,there is a requirement for simple and reproducible cell culture methods that provide adequate numbers of cells of suitable quality. We have discovered a novel way of blocking the spontaneous differentiation of hESCs in the absence of exogenous cytokines by supplementing feeder-free conditions with EHNA [erythro-9-(2-hydroxy-3-nonyl)adenine],an established inhibitor of ADA (adenosine deaminase) and cyclic nucleotide PDE2 (phosphodiesterase 2). hESCs maintained in feeder-free conditions with EHNA for more than ten passages showed no reduction in hESC-associated markers including NANOG,POU5F1 (POU domain class 5 transcription factor 1,also known as Oct-4) and SSEA4 (stage-specific embryonic antigen 4) compared with cells maintained in feeder-free conditions containing bFGF (basic fibroblast growth factor). Spontaneous differentiation was reversibly suppressed by the addition of EHNA,but,upon removing EHNA,hESC populations underwent efficient spontaneous,multi-lineage and directed differentiation. EHNA also acts as a strong blocker of directed neuronal differentiation. Chemically distinct inhibitors of ADA and PDE2 lacked the capacity of EHNA to suppress hESC differentiation,suggesting that the effect is not driven by inhibition of either ADA or PDE2. Preliminary structure-activity relationship analysis found the differentiation-blocking properties of EHNA to reside in a pharmacophore comprising a close adenine mimetic with an extended hydrophobic substituent in the 8- or 9-position. We conclude that EHNA and simple 9-alkyladenines can block directed neuronal and spontaneous differentiation in the absence of exogenous cytokine addition,and may provide a useful replacement for bFGF in large-scale or cGMP-compliant processes.
View Publication
产品类型:
产品号#:
72442
产品名:
EHNA (Hydrochloride)
Fraga AM et al. (NOV 2011)
Stem cell reviews 7 4 775--81
A survey of parameters involved in the establishment of new lines of human embryonic stem cells.
Since the derivation of the first human embryonic stem cell (hESC) lines by Thomson and coworkers in 1998,more than 1,200 different hESC lines have been established worldwide. Nevertheless,there is still a recognized interest in the establishment of new lines of hESC,particularly from HLA types and ethnic groups currently underrepresented among the available lines. The methodology of hESC derivation has evolved significantly since 1998,when human LIF (hLIF) was used for maintenance of pluripotency. However,there are a number of different strategies for the several steps involved in establishing a new line of hESC. Here we make a survey of the most relevant parameters used between 1998 and 2010 for the derivation of the 375 hESC lines deposited in two international stem cell registries,and able to form teratomas in immunocompromised mice. Although we identify some trends in the methodology for establishing hESC lines,our data reveal a much greater heterogeneity of strategies than what is used for derivation of murine ESC lines,indicating that optimum conditions have not been consolidated yet,and thus,hESC establishment is still an evolving field of research.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Subramanyam D et al. (MAY 2011)
Nature biotechnology 29 5 443--8
Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells.
The embryonic stem cell-specific cell cycle-regulating (ESCC) family of microRNAs (miRNAs) enhances reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells. Here we show that the human ESCC miRNA orthologs hsa-miR-302b and hsa-miR-372 promote human somatic cell reprogramming. Furthermore,these miRNAs repress multiple target genes,with downregulation of individual targets only partially recapitulating the total miRNA effects. These targets regulate various cellular processes,including cell cycle,epithelial-mesenchymal transition (EMT),epigenetic regulation and vesicular transport. ESCC miRNAs have a known role in regulating the unique embryonic stem cell cycle. We show that they also increase the kinetics of mesenchymal-epithelial transition during reprogramming and block TGFβ-induced EMT of human epithelial cells. These results demonstrate that the ESCC miRNAs promote dedifferentiation by acting on multiple downstream pathways. We propose that individual miRNAs generally act through numerous pathways that synergize to regulate and enforce cell fate decisions.
View Publication
产品类型:
产品号#:
72392
72394
产品名:
RepSox(盐酸盐)
RepSox(盐酸盐)
Jaremko KL and Marikawa Y (MAY 2013)
Stem cell research 10 3 489--502
Regulation of developmental competence and commitment towards the definitive endoderm lineage in human embryonic stem cells.
Human embryonic stem cells (hESCs) can self-renew and become all three germ layers. Nodal/Activin signaling specifies developmental status in hESCs: moderate Nodal/Activin signaling maintains pluripotency,while enhancement and inhibition promote definitive endoderm (DE) and neuroectoderm (NE) development,respectively. However,how modulation of Nodal/Activin signaling influences developmental competence and commitment toward specific lineages is still unclear. Here,we showed that enhancement of Nodal/Activin signaling for 4 days was necessary and sufficient to upregulate DE markers,while it diminished the upregulation of NE markers by inhibition of Nodal/Activin signaling. This suggests that after 4 days of enhanced Nodal/Activin signaling,hESCs are committed to the DE lineage and have lost competence toward the NE lineage. In contrast,inhibition of Nodal/Activin signaling using LY364947 for 2 days was sufficient to impair competence toward the DE lineage,although cells were still able to activate LEFTY1 and NODAL,direct targets of Nodal/Activin signaling. Expression analyses indicated that the levels of pluripotency regulators NANOG and POU5F1 were significantly diminished by 2 days of LY364947 treatment,although the expression of NANOG,but not POU5F1,was restored immediately upon Activin A treatment. Thus,downregulation of POU5F1 coincided with the abrogation of DE competence caused by inhibition of Nodal/Activin signaling.
View Publication
Generation of human hepatobiliary organoids with a functional bile duct from chemically induced liver progenitor cells
BackgroundLiver disease imposes a significant medical burden that persists due to a shortage of liver donors and an incomplete understanding of liver disease progression. Hepatobiliary organoids (HBOs) could provide an in vitro mini-organ model to increase the understanding of the liver and may benefit the development of regenerative medicine.MethodsIn this study,we aimed to establish HBOs with bile duct (BD) structures and mature hepatocytes (MHs) using human chemically induced liver progenitor cells (hCLiPs). hCLiPs were induced in mature cryo-hepatocytes using a small-molecule cocktail of TGF-? inhibitor (A-83-01,A),GSK3 inhibitor (CHIR99021,C),and 10% FBS (FAC). HBOs were then formed by seeding hCLiPs into ultralow attachment plates and culturing them with a combination of small molecules of Rock-inhibitor (Y-27632) and AC (YAC).ResultsThese HBOs exhibited bile canaliculi of MHs connected to BD structures,mimicking bile secretion and transportation functions of the liver. The organoids showed gene expression patterns consistent with both MHs and BD structures,and functional assays confirmed their ability to transport the bile analogs of rhodamine-123 and CLF. Functional patient-specific HBOs were also successfully created from hCLiPs sourced from cirrhotic liver tissues.ConclusionsThis study demonstrated the potential of human HBOs as an efficient model for studying hepatobiliary diseases,drug discovery,and personalized medicine.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13287-024-03877-z.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
(Dec 2024)
Stem Cell Research & Therapy 15
Generation of vascularized pancreatic progenitors through co-differentiation of endoderm and mesoderm from human pluripotent stem cells
BackgroundThe simultaneous differentiation of human pluripotent stem cells (hPSCs) into both endodermal and mesodermal lineages is crucial for developing complex,vascularized tissues,yet poses significant challenges. This study explores a method for co-differentiation of mesoderm and endoderm,and their subsequent differentiation into pancreatic progenitors (PP) with endothelial cells (EC).MethodsTwo hPSC lines were utilized. By manipulating WNT signaling,we optimized co-differentiation protocols of mesoderm and endoderm through adjusting the concentrations of CHIR99021 and mTeSR1. Subsequently,mesoderm and endoderm were differentiated into vascularized pancreatic progenitors (vPP) by adding VEGFA. The differentiation characteristics and potential of vPPs were analyzed via transcriptome sequencing and functional assays.ResultsA low-dose CHIR99021 in combination with mTeSR1 yielded approximately 30% mesodermal and 70% endodermal cells. Introduction of VEGFA significantly enhanced EC differentiation without compromising PP formation,increasing the EC proportion to 13.9%. Transcriptomic analyses confirmed the effectiveness of our protocol,showing up-regulation of mesodermal and endothelial markers,alongside enhanced metabolic pathways. Functional assays demonstrated that vPPs could efficiently differentiate into insulin-producing ?-cells,as evidenced by increased expression of ?-cell markers and insulin secretion.ConclusionOur findings provide a robust method for generating vPPs,which holds significant promise for regenerative medicine applications,particularly in diabetes treatment.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13287-024-04120-5.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
(Mar 2025)
Nature Communications 16
An obesogenic FTO allele causes accelerated development, growth and insulin resistance in human skeletal muscle cells
Human GWAS have shown that obesogenic FTO polymorphisms correlate with lean mass,but the mechanisms have remained unclear. It is counterintuitive because lean mass is inversely correlated with obesity and metabolic diseases. Here,we use CRISPR to knock-in FTOrs9939609-A into hESC-derived tissue models,to elucidate potentially hidden roles of FTO during development. We find that among human tissues,FTOrs9939609-A most robustly affect human muscle progenitors’ proliferation,differentiation,senescence,thereby accelerating muscle developmental and metabolic aging. An edited FTOrs9939609-A allele over-stimulates insulin/IGF signaling via increased muscle-specific enhancer H3K27ac,FTO expression and m6A demethylation of H19 lncRNA and IGF2 mRNA,with excessive insulin/IGF signaling leading to insulin resistance upon replicative aging or exposure to high fat diet. This FTO-m6A-H19/IGF2 circuit may explain paradoxical GWAS findings linking FTOrs9939609-A to both leanness and obesity. Our results provide a proof-of-principle that CRISPR-hESC-tissue platforms can be harnessed to resolve puzzles in human metabolism. Human GWAS paradoxically linked FTO SNPs to both lean mass and sarcopenia/obesity. Here,Guang et al used CRISPR-edited stem cells to reveal that an obesogenic FTO SNP accelerates both muscle development and aging,by increasing RNA m6A demethylation.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
(Jun 2024)
bioRxiv 355 13
Human TSC2 Mutant Cells Exhibit Aberrations in Early Neurodevelopment Accompanied by Changes in the DNA Methylome
Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart,lungs,kidney,and brain are all hallmarks of the disease,the most severe symptoms of TSC are often neurological,including seizures,autism,psychiatric disorders,and intellectual disabilities. TSC is caused by loss of function mutations in the TSC1 or TSC2 genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1). While TSC neurological phenotypes are well-documented,it is not yet known how early in neural development TSC1/2-mutant cells diverge from the typical developmental trajectory. Another outstanding question is the contribution of homozygous-mutant cells to disease phenotypes and whether such phenotypes are also seen in the heterozygous-mutant populations that comprise the vast majority of cells in patients. Using TSC patient-derived isogenic induced pluripotent stem cells (iPSCs) with defined genetic changes,we observed aberrant early neurodevelopment in vitro,including misexpression of key proteins associated with lineage commitment and premature electrical activity. These alterations in differentiation were coincident with hundreds of differentially methylated DNA regions,including loci associated with key genes in neurodevelopment. Collectively,these data suggest that mutation or loss of TSC2 affects gene regulation and expression at earlier timepoints than previously appreciated,with implications for whether and how prenatal treatment should be pursued.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
E. Lorenzo et al. (mar 2002)
The Journal of biological chemistry 277 13 10883--92
Doxorubicin induces apoptosis and CD95 gene expression in human primary endothelial cells through a p53-dependent mechanism.
Regulation of the homeostasis of vascular endothelium is critical for the processes of vascular remodeling and angiogenesis under physiological and pathological conditions. Here we show that doxorubicin (Dox),a drug used in antitumor therapy,triggered a marked accumulation of p53 and induced CD95 gene expression and apoptosis in proliferating human umbilical vein endothelial cells (HUVECs). Transfection and site-directed mutagenesis experiments using the CD95 promoter fused to an intronic enhancer indicated the requirement for a p53 site for Dox-induced promoter activation. Furthermore,the p53 inhibitor pifithrin-alpha (PFT-alpha) blocked both promoter inducibility and protein up-regulation of CD95 in response to Dox. Up-regulated CD95 in Dox-treated cells was functional in eliciting apoptosis upon incubation of the cells with an agonistic CD95 antibody. However,Dox-mediated apoptosis was independent of CD95/CD95L interaction. The analysis of apoptosis in the presence of PFT-alpha and benzyloxycarbonyl-Val-Ala-dl-Asp-fluoromethylketone revealed that both p53 and caspase activation are required for Dox-mediated apoptosis of HUVECs. Finally,Dox triggered Bcl-2 down-regulation,cytochrome c release from mitochondria,and the activation of caspases 9 and 3,suggesting the involvement of a mitochondrially operated pathway of apoptosis. These results highlight the role of p53 in the response of primary endothelial cells to genotoxic drugs and may reveal a novel mechanism underlying the antitumoral properties of Dox,related to its ability to induce apoptosis in proliferating endothelial cells.
View Publication