Petersen OW and Polyak K (MAY 2010)
Cold Spring Harbor perspectives in biology 2 5 a003160
Stem cells in the human breast.
The origins of the epithelial cells participating in the development,tissue homeostasis,and cancer of the human breast are poorly understood. However,emerging evidence suggests a role for adult tissue-specific stem cells in these processes. In a hierarchical manner,these generate the two main mammary cell lineages,producing an increasing number of cells with distinct properties. Understanding the biological characteristics of human breast stem cells and their progeny is crucial in attempts to compare the features of normal stem cells and cancer precursor cells and distinguish these from nonprecursor cells and cells from the bulk of a tumor. A historical overview of research on human breast stem cells in primary tissue and in culture reveals the progress that has been made in this area,whereas a focus on the cell-of-origin and reprogramming that occurs during neoplastic conversion provides insight into the enigmatic way in which human breast cancers are skewed toward the luminal epithelial lineage.
View Publication
Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy,particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes,including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-Gmut glycoproteins. We assessed the retargeting potential of nb102c3 and evaluated transduction efficiency in activated T lymphocytes. FOXP3 expression was suppressed using shRNA delivered by these LVs. Our results demonstrate that PD1-targeted LVs exerted pronounced tropism towards PD1+ cells,enabling the selective transduction of activated T lymphocytes while sparing naive T cells. The suppression of FOXP3 in Tregs reduced their suppressive activity. PD1-targeted glycoprotein H provided greater specificity,whereas the VSV-Gmut,together with the anti-PD1 pseudoreceptor,achieved higher viral titers but was less selective. Our study demonstrates that PD1-targeted LVs may offer a novel strategy to modulate immune responses within the tumor microenvironment with the potential for developing new therapeutic strategies aimed at enhancing anti-tumor immunity.
View Publication
产品类型:
产品号#:
17952
17952RF
100-0696
产品名:
EasySep™人CD4+ T细胞分选试剂盒
RoboSep™ 人CD4+ T细胞分选试剂盒
EasySep™人CD4+ T细胞分离试剂盒
Li Y et al. (FEB 2007)
Journal of immunology (Baltimore,Md. : 1950) 178 3 1938--47
Phosphorylated ERM is responsible for increased T cell polarization, adhesion, and migration in patients with systemic lupus erythematosus.
Systemic lupus erythematosus (SLE) is an autoimmune/inflammatory disease characterized by autoantibody production and abnormal T cells that infiltrate tissues through not well-known mechanisms. We report that SLE T lymphocytes display increased levels of CD44,ezrin,radixin,and moesin (ERM) phosphorylation,stronger actin polymerization,higher polar cap formation,and enhanced adhesion and chemotactic migration compared with T cells from patients with rheumatoid arthritis and normal individuals. Silencing of CD44 by CD44 small interfering RNA in SLE T cells inhibited significantly their ability to adhere and migrate as did treatment with Rho kinase and actin polymerization inhibitors. Forced expression of T567D-ezrin,a phosphorylation-mimic form,enhanced remarkably the adhesion and migration rate of normal T cells. Anti-CD3/TCR autoantibodies present in SLE sera caused increased ERM phosphorylation,adhesion,and migration in normal T cells. pERM and CD44 are highly expressed in T cells infiltrating in the kidneys of patients with lupus nephritis. These data prove that increased ERM phosphorylation represents a key molecular abnormality that guides T cell adhesion and migration in SLE patients.
View Publication
产品类型:
产品号#:
15021
15061
产品名:
RosetteSep™人T细胞富集抗体混合物
RosetteSep™人T细胞富集抗体混合物
Hattermann K et al. (MAY 2007)
FASEB journal : official publication of the Federation of American Societies for Experimental Biology 21 7 1575--85
The Toll-like receptor 7/8-ligand resiquimod (R-848) primes human neutrophils for leukotriene B4, prostaglandin E2 and platelet-activating factor biosynthesis.
Toll-like receptors (TLR) recognize pathogen-associated molecular patterns and play important roles in the innate immune system. While single-stranded viral RNA is the natural ligand of TLR7/TLR8,the imidazoquinoline resiquimod (R-848) is recognized as a potent synthetic agonist of TLR7/TLR8. We investigated the effects of TLR7/8 activation on lipid mediator production in polymorphonuclear leukocytes exposed to R-848. Although R-848 had minimal effects by itself,it strongly enhanced leukotriene B4 formation on subsequent stimulation by fMLP,platelet-activating factor,and the ionophore A23187. R-848 acted via TLR8 but not TLR7 as shown by the lack of effect of the TLR7-specific ligand imiquimod. Priming with R-848 also resulted in enhanced arachidonic acid release and platelet-activating factor formation following fMLP stimulation,as well as enhanced prostaglandin E2 synthesis following the addition of arachidonic acid. Western blot analysis demonstrated that R-848 induced the phosphorylation of the cytosolic phospholipase A2alpha,promoted 5-lipoxygenase translocation and potently stimulated the expression of the type 2 cyclooxygenase. Bafilomycin A1,an inhibitor of endosomal acidification,efficiently inhibited all R-848-induced effects. These studies demonstrate that TLR8 signaling strongly promotes inflammatory lipid mediator biosynthesis and provide novel insights on innate immune response to viral infections.
View Publication
产品类型:
产品号#:
73782
73784
产品名:
R848
R848
Liu C et al. (DEC 2010)
Blood 116 25 5518--27
Progenitor cell dose determines the pace and completeness of engraftment in a xenograft model for cord blood transplantation.
Two critical concerns in clinical cord blood transplantation are the initial time to engraftment and the subsequent restoration of immune function. These studies measured the impact of progenitor cell dose on both the pace and strength of hematopoietic reconstitution by transplanting nonobese diabetic/severe combined immunodeficiency/interleukin-2 receptor-gamma-null (NSγ) mice with lineage-depleted aldehyde dehydrogenase-bright CD34(+) human cord blood progenitors. The progress of each transplant was monitored over an extended time course by repeatedly analyzing the peripheral blood for human hematopoietic cells. In vivo human hematopoietic development was complete. After long-term transplantation assays (≥ 19 weeks),human T-cell development was documented within multiple tissues in 16 of 32 NSγ mice. Human T-cell differentiation was active within NSγ thymuses,as documented by the presence of CD4(+) CD8(+) T-cell progenitors as well as T-cell receptor excision circles. It is important to note that although myeloid and B-cell engraftment was detected as early as 4 weeks after transplantation,human T-cell development was exclusively late onset. High progenitor cell doses were associated with a robust human hematopoietic chimerism that accelerated both initial time to engraftment and subsequent T-cell development. At lower progenitor cell doses,the chimerism was weak and the human hematopoietic lineage development was frequently incomplete.
View Publication
A two-dimensionally coincident second difference cosmic ray spike removal method for the fully automated processing of Raman spectra.
Charge-coupled device detectors are vulnerable to cosmic rays that can contaminate Raman spectra with positive going spikes. Because spikes can adversely affect spectral processing and data analyses,they must be removed. Although both hardware-based and software-based spike removal methods exist,they typically require parameter and threshold specification dependent on well-considered user input. Here,we present a fully automated spike removal algorithm that proceeds without requiring user input. It is minimally dependent on sample attributes,and those that are required (e.g.,standard deviation of spectral noise) can be determined with other fully automated procedures. At the core of the method is the identification and location of spikes with coincident second derivatives along both the spectral and spatiotemporal dimensions of two-dimensional datasets. The method can be applied to spectra that are relatively inhomogeneous because it provides fairly effective and selective targeting of spikes resulting in minimal distortion of spectra. Relatively effective spike removal obtained with full automation could provide substantial benefits to users where large numbers of spectra must be processed.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Aufderheide M et al. (JAN 2015)
Experimental and Toxicologic Pathology 68 1 1--11
A new computer-controlled air–liquid interface cultivation system for the generation of differentiated cell cultures of the airway epithelium
The increased application of in vitro systems in pharmacology and toxicology requires cell culture systems that facilitate the cultivation process and ensure stable,reproducible and controllable cultivation conditions. Up to now,some devices have been developed for the cultivation of cells under submersed conditions. However,systems meeting the requirements of an air-liquid interface (ALI) cultivation for the special needs of bronchial epithelial cells for example are still lacking. In order to obtain in vivo like organization and differentiation of these cells they need to be cultivated under ALI conditions on microporous membranes in direct contact with the environmental atmosphere. For this purpose,a Long-Term-Cultivation system was developed (CULTEX(®) LTC-C system) for the computer-controlled cultivation of such cells. The transwell inserts are placed in an incubator module (24 inserts),which can be adjusted for the medium level (ultrasonic pulse-echosensor),time and volume-dependent medium exchange,and frequency for mixing the medium with a rotating disc for homogeneous distribution of medium and secretion components. Normal primary freshly isolated bronchial epithelial cells were cultivated for up to 38 days to show the efficiency of such a cultivation procedure for generating 3D cultures exhibiting in vivo-like pseudostratified organization of the cells as well as differentiation characteristics like mucus-producing and cilia-forming cells.
View Publication
TLR7/8 signaling activation enhances the potency of human pluripotent stem cell-derived eosinophils in cancer immunotherapy for solid tumors
Efficient tumor T-cell infiltration is crucial for the effectiveness of T-cell-based therapies against solid tumors. Eosinophils play crucial roles in recruiting T cells in solid tumors. Our group has previously generated induced eosinophils (iEOs) from human pluripotent stem cells and exhibited synergistic efficacy with CAR-T cells in solid tumor inhibition. However,administrated eosinophils might influx into inflammatory lungs,posing a potential safety risk. Mitigating the safety concern and enhancing efficacy is a promising development direction for further application of eosinophils.MethodsWe developed a new approach to generate eosinophils with enhanced potency from human chemically reprogrammed induced pluripotent stem cells (hCiPSCs) with the Toll-like receptor (TLR) 7/8 signaling agonist R848.ResultsR848-activated iEOs (R-iEOs) showed significantly decreased influx to the inflamed lungs,indicating a lower risk of causing airway disorders. Furthermore,these R-iEOs had enhanced anti-tumor functions,preferably accumulated at tumor sites,and further increased T-cell infiltration. The combination of R-iEOs and CAR-T cells suppressed tumor growth in mice. Moreover,the chemo-trafficking signaling increased in R-iEOs,which may contribute to the decreased lung influx of R-iEOs and the increased tumor recruitment of T cells.ConclusionOur study provides a novel approach to alleviate the potential safety concerns associated with eosinophils while increasing T-cell infiltration in solid tumors. This finding offers a prospective strategy for incorporating eosinophils to improve CAR-T-cell immunotherapy for solid tumors in the future.
View Publication
产品类型:
产品号#:
100-0483
100-0484
100-0956
100-0276
100-1130
产品名:
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
ImmunoCult™ XF培养基
mTeSR™ Plus
mTeSR™ Plus
R. Gu et al. (Mar 2025)
Journal of Ovarian Research 18 3
Identification of exosome-related SERPINB1 as a novel predictor for tumor immune microenvironment and clinical outcomes in ovarian cancer
With a high global incidence of over three million new cases in 2020 and a high mortality of over two million fatalities,ovarian cancer is one of the most common malignant tumors in gynecology. Exosomes can control the immunological condition of the tumor microenvironment (TME) by participating in intercellular interactions. Therefore,we aimed to construct an exosome-related prognostic model to predict the clinical outcomes of ovarian cancer patients. In this research,expression patterns of exosome-related genes were examined in multiple single-cell RNA-sequencing and bulk RNA-sequencing datasets. In addition,a novel exosome-related prognostic model was established by the least absolute shrinkage and selection operator (LASSO) regression method. Then,the correlations between risk score and immunological characteristics of the TME were explored. Moreover,SERPINB1,a gene in the prognostic signature,was further analyzed to reveal its value as a novel biomarker. In the current study,combined with single-cell and bulk omics datasets,we constructed an exosome-related prognostic model of four genes (LGALS3BP,SAT1,SERPINB1,and SH3BGRL3). Moreover,the risk score was associated with worse overall survival (OS) in ovarian cancer patients. Further analysis found that patients with high-risk score tended to shape a desert TME with hardly infiltration of immune cells. Then,SERPINB1,positively correlated with the favorable OS and negatively with the risk score,was chosen as the representative biomarker of the model. Moreover,SERPINB1 was positively correlated with the infiltration of immune subpopulations in both public and in-house cohort. In addition,the high-resolution analysis found that SERPINB1 + tumor cells communicated with microenvironment cells frequently,further explaining the potential reason for shaping an inflamed TME. To sum up,we established a novel exosome-related prognostic model (LGALS3BP,SAT1,SERPINB1,and SH3BGRL3) to predict the prognosis of patients with ovarian cancer and identify the immunological characteristics of the TME. In addition,SERPINB1 was identified as a promising biomarker for prognostic prediction in ovarian cancer. The online version contains supplementary material available at 10.1186/s13048-025-01589-3.
View Publication