J. M. Crook and E. Tomaskovic-Crook ( 2017)
Methods in molecular biology (Clifton,N.J.) 1590 199--206
Culturing and Cryobanking Human Neural Stem Cells.
The discovery and study of human neural stem cells has advanced our understanding of human neurogenesis,and the development of novel therapeutics based on neural cell replacement. Here,we describe methods to culture and cryopreserve human neural stem cells (hNSCs) for expansion and banking. Importantly,the protocols ensure that the multipotency of hNSCs is preserved to enable differentiation to neurons and supporting neuroglia.
View Publication
Asokan R et al. (JUL 2006)
Journal of immunology (Baltimore,Md. : 1950) 177 1 383--94
Characterization of human complement receptor type 2 (CR2/CD21) as a receptor for IFN-alpha: a potential role in systemic lupus erythematosus.
Human complement receptor type 2 (CR2/CD21) is a B lymphocyte membrane glycoprotein that plays a central role in the immune responses to foreign Ags as well as the development of autoimmunity to nuclear Ags in systemic lupus erythematosus. In addition to these three well-characterized ligands,C3d/iC3b,EBV-gp350,and CD23,a previous study has identified CR2 as a potential receptor for IFN-alpha. IFN-alpha,a multifunctional cytokine important in the innate immune system,has recently been proposed to play a major pathogenic role in the development of systemic lupus erythematosus in humans and mice. In this study,we have shown using surface plasmon resonance and ELISA approaches that CR2 will bind IFN-alpha in the same affinity range as the other three well-characterized ligands studied in parallel. In addition,we show that IFN-alpha interacts with short consensus repeat domains 1 and 2 in a region that serves as the ligand binding site for C3d/iC3b,EBV-gp350,and CD23. Finally,we show that treatment of purified human peripheral blood B cells with the inhibitory anti-CR2 mAb 171 diminishes the induction of IFN-alpha-responsive genes. Thus,IFN-alpha represents a fourth class of extracellular ligands for CR2 and interacts with the same domain as the other three ligands. Defining the role of CR2 as compared with the well-characterized type 1 IFN-alpha receptor 1 and 2 in mediating innate immune and autoimmune roles of this cytokine should provide additional insights into the biologic roles of this interaction.
View Publication
产品类型:
产品号#:
15024
15064
产品名:
RosetteSep™ 人B细胞富集抗体混合物
RosetteSep™人B细胞富集抗体混合物
Mitchell WB et al. (MAY 2007)
Blood 109 9 3725--32
Mapping early conformational changes in alphaIIb and beta3 during biogenesis reveals a potential mechanism for alphaIIbbeta3 adopting its bent conformation.
Current evidence supports a model in which the low-affinity state of the platelet integrin alphaIIbbeta3 results from alphaIIbbeta3 adopting a bent conformation. To assess alphaIIbbeta3 biogenesis and how alphaIIbbeta3 initially adopts the bent conformation,we mapped the conformational states occupied by alphaIIb and beta3 during biogenesis using conformation-specific monoclonal antibodies (mAbs). We found that alphaIIbbeta3 complex formation was not limited by the availability of either free pro-alphaIIb or free beta3,suggesting that other molecules,perhaps chaperones,control complex formation. Five beta3-specific,ligand-induced binding site (LIBS) mAbs reacted with much or all free beta3 but not with beta3 when in complex with mature alphaIIb,suggesting that beta3 adopts its mature conformation only after complex formation. Conversely,2 alphaIIb-specific LIBS mAbs directed against the alphaIIb Calf-2 region adjacent to the membrane reacted with only minor fractions of free pro-alphaIIb,raising the possibility that pro-alphaIIb adopts a bent conformation early in biogenesis. Our data suggest a working model in which pro-alphaIIb adopts a bent conformation soon after synthesis,and then beta3 assumes its bent conformation by virtue of its interaction with the bent pro-alphaIIb.
View Publication
产品类型:
产品号#:
15026
15066
产品名:
RosetteSep™ 人造血祖细胞富集抗体混合物
RosetteSep™人造血祖细胞富集抗体混合物
Poon E et al. (JUN 2015)
Circulation. Cardiovascular genetics 8 3 427--436
Proteomic Analysis of Human Pluripotent Stem Cell-Derived, Fetal, and Adult Ventricular Cardiomyocytes Reveals Pathways Crucial for Cardiac Metabolism and Maturation
BACKGROUND Differentiation of pluripotent human embryonic stem cells (hESCs) to the cardiac lineage represents a potentially unlimited source of ventricular cardiomyocytes (VCMs),but hESC-VCMs are developmentally immature. Previous attempts to profile hESC-VCMs primarily relied on transcriptomic approaches,but the global proteome has not been examined. Furthermore,most hESC-CM studies focus on pathways important for cardiac differentiation,rather than regulatory mechanisms for CM maturation. We hypothesized that gene products and pathways crucial for maturation can be identified by comparing the proteomes of hESCs,hESC-derived VCMs,human fetal and human adult ventricular and atrial CMs. METHODS AND RESULTS Using two-dimensional-differential-in-gel electrophoresis,121 differentially expressed (textgreater1.5-fold; Ptextless0.05) proteins were detected. The data set implicated a role of the peroxisome proliferator-activated receptor $\$ in cardiac maturation. Consistently,WY-14643,a peroxisome proliferator-activated receptor $\$,increased fatty oxidative enzyme level,hyperpolarized mitochondrial membrane potential and induced a more organized morphology. Along this line,treatment with the thyroid hormone triiodothyronine increased the dynamic tension developed in engineered human ventricular cardiac microtissue by 3-fold,signifying their maturation. CONCLUSIONS We conclude that the peroxisome proliferator-activated receptor $\$ thyroid hormone pathways modulate the metabolism and maturation of hESC-VCMs and their engineered tissue constructs. These results may lead to mechanism-based methods for deriving mature chamber-specific CMs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Serrero G and Lepak NM (APR 1997)
Biochemical and biophysical research communications 233 1 200--2
Prostaglandin F2alpha receptor (FP receptor) agonists are potent adipose differentiation inhibitors for primary culture of adipocyte precursors in defined medium.
Prostaglandin F2alpha inhibits adipose differentiation of primary culture of adipocyte precursors and of the adipogenic cell line 1246 in defined medium. In the present paper,we investigated the effect of FP receptor agonists cloprostenol and fluprostenol on the differentiation of newborn rat adipocyte precursors in primary culture. The results show that cloprostenol and fluprostenol are very potent inhibitors of adipose differentiation. Dose response studies indicate that both agonists are more potent than PGF2alpha in inhibiting adipocyte precursors differentiation. 50% inhibition of adipose differentiation was observed at a concentration of 3 x 10(-12) M for cloprostenol and 3 to 10 x 10(-11) M for fluprostenol respectively whereas the PGF2alpha concentration required to elicit the same effect was 10(-8) M. In contrast compounds structurally related to PGE2 such as 17-phenyl trinor PGE2 had no effect on adipose differentiation except when added at a 10,000-fold higher concentration.
View Publication
产品类型:
产品号#:
73672
73674
产品名:
S. Kalyan et al. (apr 2020)
Scientific reports 10 1 5901
Distinct inactivated bacterial-based immune modulators vary in their therapeutic efficacies for treating disease based on the organ site of pathology.
Recent developments in understanding how the functional phenotype of the innate immune system is programmed has led to paradigm-shifting views on immunomodulation. These advances have overturned two long-held dogmas: (1) only adaptive immunity confers immunological memory; and,(2) innate immunity lacks specificity. This work describes the observation that innate immune effector cells appear to be differentially recruited to specific pathological sites when mobilized by distinct inactivated bacterial-based stimuli administered subcutaneously. The studies presented suggest that the immune system,upon detecting the first signs of a potential infection by a specific pathogen,tends to direct its resources to the compartment from which that pathogen is most likely originating. The findings from this work puts forth the novel hypothesis that the immunotherapeutic efficacy of a microbial-based stimulus for innate immune mobilization depends on the correct selection of the microbial species used as the stimulant and its relationship to the organ in which the pathology is present.
View Publication
T. E. Ludwig et al. (aug 2006)
Nature methods 3 8 637--46
Feeder-independent culture of human embryonic stem cells.
Feeder-independent culture of human embryonic stem cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Wang J et al. (JAN 2010)
Stem cells (Dayton,Ohio) 28 1 17--28
Notch promotes radioresistance of glioma stem cells.
Radiotherapy represents the most effective nonsurgical treatments for gliomas. However,gliomas are highly radioresistant and recurrence is nearly universal. Results from our laboratory and other groups suggest that cancer stem cells contribute to radioresistance in gliomas and breast cancers. The Notch pathway is critically implicated in stem cell fate determination and cancer. In this study,we show that inhibition of Notch pathway with gamma-secretase inhibitors (GSIs) renders the glioma stem cells more sensitive to radiation at clinically relevant doses. GSIs enhance radiation-induced cell death and impair clonogenic survival of glioma stem cells but not non-stem glioma cells. Expression of the constitutively active intracellular domains of Notch1 or Notch2 protect glioma stem cells against radiation. Notch inhibition with GSIs does not alter the DNA damage response of glioma stem cells after radiation but rather reduces Akt activity and Mcl-1 levels. Finally,knockdown of Notch1 or Notch2 sensitizes glioma stem cells to radiation and impairs xenograft tumor formation. Taken together,our results suggest a critical role of Notch signaling to regulate radioresistance of glioma stem cells. Inhibition of Notch signaling holds promise to improve the efficiency of current radiotherapy in glioma treatment.
View Publication
产品类型:
产品号#:
72082
产品名:
DAPT
Kim K et al. (SEP 2010)
Nature 467 7313 285--90
Epigenetic memory in induced pluripotent stem cells.
Somatic cell nuclear transfer and transcription-factor-based reprogramming revert adult cells to an embryonic state,and yield pluripotent stem cells that can generate all tissues. Through different mechanisms and kinetics,these two reprogramming methods reset genomic methylation,an epigenetic modification of DNA that influences gene expression,leading us to hypothesize that the resulting pluripotent stem cells might have different properties. Here we observe that low-passage induced pluripotent stem cells (iPSCs) derived by factor-based reprogramming of adult murine tissues harbour residual DNA methylation signatures characteristic of their somatic tissue of origin,which favours their differentiation along lineages related to the donor cell,while restricting alternative cell fates. Such an 'epigenetic memory' of the donor tissue could be reset by differentiation and serial reprogramming,or by treatment of iPSCs with chromatin-modifying drugs. In contrast,the differentiation and methylation of nuclear-transfer-derived pluripotent stem cells were more similar to classical embryonic stem cells than were iPSCs. Our data indicate that nuclear transfer is more effective at establishing the ground state of pluripotency than factor-based reprogramming,which can leave an epigenetic memory of the tissue of origin that may influence efforts at directed differentiation for applications in disease modelling or treatment.
View Publication
产品类型:
产品号#:
72012
72014
72282
72284
产品名:
5-氮杂胞苷(5-Azacytidine)
5-氮杂胞苷(5-Azacytidine)
曲古抑菌素 A(Trichostatin A)
曲古抑菌素 A(Trichostatin A)
Mallanna SK and Duncan SA ( 2013)
26 SUPPL.26 Unit 1G.4.
Differentiation of hepatocytes from pluripotent stem cells.
Differentiation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells into hepatocyte-like cells provides a platform to study the molecular basis of human hepatocyte differentiation,to develop cell culture models of liver disease,and to potentially provide hepatocytes for treatment of end-stage liver disease. Additionally,hepatocyte-like cells generated from human pluripotent stem cells could serve as platforms for drug discovery,determination of pharmaceutical-induced hepatotoxicity,and evaluation of idiosyncratic drug-drug interactions. Here,we describe a step-wise protocol previously developed in our laboratory that facilitates the highly efficient and reproducible differentiation of human pluripotent stem cells into hepatocyte-like cells. Our protocol uses defined culture conditions and closely recapitulates key developmental events that are found to occur during hepatogenesis.
View Publication