A. Wardaszka et al. (Jul 2025)
International Journal of Molecular Sciences 26 14
Selection of Stable Reference Genes for Gene Expression Studies in Activated and Non-Activated PBMCs Under Normoxic and Hypoxic Conditions
Immunotherapy has emerged as a key modality in cancer treatment,yet its effectiveness varies significantly among patients,often due to the metabolic stress imposed by the tumor microenvironment. Hypoxia,a major factor in the tumor microenvironment,results from the high metabolic rate of tumor cells and inadequate vascularization,impairing immune cells’ function and potentially influencing gene expression profiles. Despite the widespread use of quantitative real-time PCR in immunological studies,to the best of our knowledge,data on reference gene stability in human peripheral blood mononuclear cells under hypoxic conditions is limited. In our study,we assessed the expression stability of commonly used reference genes ( S18,HPRT,IPO8,RPL13A,SDHA,PPIA,and UBE2D2 ) in both non-stimulated and CD3/CD28-activated peripheral blood mononuclear cells cultured under normoxic,hypoxic (1% O 2 ),and chemically induced hypoxic conditions for 24 h. Analysis using four different algorithms—delta Ct,geNorm,NormFinder,and BestKeeper—identified RPL13A,S18,and SDHA as the most suitable reference genes for human peripheral blood mononuclear cells under hypoxic conditions. In contrast,IPO8 and PPIA were found to be the least suitable housekeeping genes. The study provides essential insights into the stability of reference genes in peripheral blood mononuclear cells under hypoxic conditions,a critical but understudied aspect of immunological research. Given the significant impact of hypoxia on T cell metabolism and function in the tumor microenvironment,selecting reliable reference genes is crucial for accurate gene expression analysis. Our findings will be valuable for future studies investigating hypoxia-driven metabolic reprogramming in immune cells,ultimately contributing to a better understanding of T cell responses in cancer immunotherapy.
View Publication
产品类型:
产品号#:
100-0784
10971
10991
85450
85460
产品名:
ImmunoCult™ 人CD3/CD28 T细胞激活剂
ImmunoCult™ 人CD3/CD28 T细胞激活剂
ImmunoCult™ 人CD3/CD28 T细胞激活剂
SepMate™-50 (IVD)
SepMate™-50 (IVD)
M. Hasmann and I. Schemainda (nov 2003)
Cancer research 63 21 7436--42
FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis.
Deregulation of apoptosis,the physiological form of cell death,is closely associated with immunological diseases and cancer. Apoptosis is activated either by death receptor-driven or mitochondrial pathways,both of which may provide potential targets for novel anticancer drugs. Although several ligands stimulating death receptors have been described,the actual molecular events triggering the mitochondrial pathway are largely unknown. Here,we show initiation of apoptosis by gradual depletion of the intracellular coenzyme NAD+. We identified the first low molecular weight compound,designated FK866,which induces apoptosis by highly specific,noncompetitive inhibition of nicotinamide phosphoribosyltransferase (NAPRT),a key enzyme in the regulation of NAD+ biosynthesis from the natural precursor nicotinamide. Interference with this enzyme does not primarily intoxicate cells because the mitochondrial respiratory activity and the NAD+ -dependent redox reactions involved remain unaffected as long as NAD+ is not effectively depleted by catabolic reactions. Certain tissues,however,have a high turnover of NAD+ through its cleavage by enzymes like poly(ADP-ribose) polymerase. Such cells often rely on the more readily available nicotinamide pathway for NAD+ synthesis and undergo apoptosis after inhibition of NAPRT,whereas cells effectively using the nicotinic acid pathway for NAD+ synthesis remain unaffected. In support of this concept,FK866 effectively induced delayed cell death by apoptosis in HepG2 human liver carcinoma cells with an IC(50) of approximately 1 nM,did not directly inhibit mitochondrial respiratory activity,but caused gradual NAD+ depletion through specific inhibition of NAPRT. This enzyme,when partially purified from K562 human leukemia cells,was noncompetitively inhibited by FK866,and the inhibitor constants were calculated to be 0.4 nM for the enzyme/substrate complex (K(i)) and 0.3 nM for the free enzyme (K(i)'),respectively. Nicotinic acid and nicotinamide were both found to have antidote potential for the cellular effects of FK866. FK866 may be used for treatment of diseases implicating deregulated apoptosis such as cancer for immunosuppression or as a sensitizer for genotoxic agents. Furthermore,it may provide an important tool for investigation of the molecular triggers of the mitochondrial pathway leading to apoptosis through enabling temporal separation of NAD+ decrease from ATP breakdown and apoptosis by several days.
View Publication
产品类型:
产品号#:
产品名:
Buckley NE et al. (OCT 2013)
Nucleic acids research 41 18 8601--8614
BRCA1 is a key regulator of breast differentiation through activation of Notch signalling with implications for anti-endocrine treatment of breast cancers.
Here,we show for the first time,that the familial breast/ovarian cancer susceptibility gene BRCA1 activates the Notch pathway in breast cells by transcriptional upregulation of Notch ligands and receptors in both normal and cancer cells. We demonstrate through chromatin immunoprecipitation assays that BRCA1 is localized to a conserved intronic enhancer region within the Notch ligand Jagged-1 (JAG1) gene,an event requiring $$Np63. We propose that this BRCA1/$$Np63-mediated induction of JAG1 may be important the regulation of breast stem/precursor cells,as knockdown of all three proteins resulted in increased tumoursphere growth and increased activity of stem cell markers such as Aldehyde Dehydrogenase 1 (ALDH1). Knockdown of Notch1 and JAG1 phenocopied BRCA1 knockdown resulting in the loss of Estrogen Receptor-$$ (ER-$$) expression and other luminal markers. A Notch mimetic peptide could activate an ER-$$ promoter reporter in a BRCA1-dependent manner,whereas Notch inhibition using a $$-secretase inhibitor reversed this process. We demonstrate that inhibition of Notch signalling resulted in decreased sensitivity to the anti-estrogen drug Tamoxifen but increased expression of markers associated with basal-like breast cancer. Together,these findings suggest that BRCA1 transcriptional upregulation of Notch signalling is a key event in the normal differentiation process in breast tissue.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Nä et al. (MAR 2012)
Stem Cells 30 3 452--60
RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation.
Human embryonic stem cells (hESC) have a unique capacity to self-renew and differentiate into all the cell types found in human body. Although the transcriptional regulators of pluripotency are well studied,the role of cytoplasmic regulators is still poorly characterized. Here,we report a new stem cell-specific RNA-binding protein L1TD1 (ECAT11,FLJ10884) required for hESC self-renewal and cancer cell proliferation. Depletion of L1TD1 results in immediate downregulation of OCT4 and NANOG. Furthermore,we demonstrate that OCT4,SOX2,and NANOG all bind to the promoter of L1TD1. Moreover,L1TD1 is highly expressed in seminomas,and depletion of L1TD1 in these cancer cells influences self-renewal and proliferation. We show that L1TD1 colocalizes and interacts with LIN28 via RNA and directly with RNA helicase A (RHA). LIN28 has been reported to regulate translation of OCT4 in complex with RHA. Thus,we hypothesize that L1TD1 is part of the L1TD1-RHA-LIN28 complex that could influence levels of OCT4. Our results strongly suggest that L1TD1 has an important role in the regulation of stemness.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
36254
85850
85857
85870
85875
产品名:
DMEM/F-12 with 15 mM HEPES
mTeSR™1
mTeSR™1
D. Shishkova et al. (Sep 2025)
International Journal of Molecular Sciences 26 18
Isolation of Primary Human Saphenous Vein Endothelial Cells, Human Internal Thoracic Artery Endothelial Cells, and Human Adipose Tissue-Derived Microvascular Endothelial Cells from Patients Undergoing Coronary Artery Bypass Graft Surgery
Primary human endothelial cells represent an essential tool to model endothelial dysfunction and to screen interventions for its treatment. Here,we developed a protocol for the synchronous isolation of primary human saphenous vein endothelial cells (HSaVEC),human internal thoracic artery endothelial cells (HITAEC),and human microvascular endothelial cells (HMVEC) from SV and ITA utilized as conduits during coronary artery bypass graft surgery and from subcutaneous adipose tissue excised while providing an access to the heart. Treatment by collagenase type IV and magnetic separation with anti-CD31-antibody-coated beads ensured relatively high efficiency of the isolation (≈60% for HSaVEC,≈50% for HITAEC,and ≈20% for HMVEC) and high purity (≥99%) of isolated ECs within ≈2 weeks (HSaVEC),≈2–3 weeks (HITAEC),and ≈3–4 weeks (HMVEC). A colorimetric assay of cell viability and proliferation,as well as real-time bioimpedance monitoring using the xCELLigence instrument,demonstrated high proliferative activity in HSaVEC,HITAEC,and HMVEC,whilst the in vitro tube formation assay indicated their angiogenic potential. The isolation of HSaVEC,HITAEC,and HMVEC from patients undergoing coronary artery bypass graft surgery is a promising option to investigate endothelial heterogeneity,to interrogate endothelial responses to various stresses,and to pinpoint the optimal approaches for restoring endothelial homeostasis,thereby reproducing them within the bedside-to-bench-to-bedside concept.
View Publication
产品类型:
产品号#:
18000
产品名:
EasySep™磁极
Qiu C et al. (FEB 2008)
Blood 111 4 2400--8
Globin switches in yolk sac-like primitive and fetal-like definitive red blood cells produced from human embryonic stem cells.
We have previously shown that coculture of human embryonic stem cells (hESCs) for 14 days with immortalized fetal hepatocytes yields CD34(+) cells that can be expanded in serum-free liquid culture into large numbers of megaloblastic nucleated erythroblasts resembling yolk sac-derived cells. We show here that these primitive erythroblasts undergo a switch in hemoglobin (Hb) composition during late terminal erythroid maturation with the basophilic erythroblasts expressing predominantly Hb Gower I (zeta(2)epsilon(2)) and the orthochromatic erythroblasts hemoglobin Gower II (alpha(2)epsilon(2)). This suggests that the switch from Hb Gower I to Hb Gower II,the first hemoglobin switch in humans is a maturation switch not a lineage switch. We also show that extending the coculture of the hESCs with immortalized fetal hepatocytes to 35 days yields CD34(+) cells that differentiate into more developmentally mature,fetal liver-like erythroblasts,that are smaller,express mostly fetal hemoglobin,and can enucleate. We conclude that hESC-derived erythropoiesis closely mimics early human development because the first 2 human hemoglobin switches are recapitulated,and because yolk sac-like and fetal liver-like cells are sequentially produced. Development of a method that yields erythroid cells with an adult phenotype remains necessary,because the most mature cells that can be produced with current systems express less than 2% adult beta-globin mRNA.
View Publication
产品类型:
产品号#:
09600
09650
18056
18056RF
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
Weller S et al. (DEC 2004)
Blood 104 12 3647--54
Human blood IgM memory" B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire."
The human peripheral B-cell compartment displays a large population of immunoglobulin M-positive,immunoglobulin D-positive CD27(+) (IgM(+)IgD(+)CD27(+)) memory" B cells carrying a mutated immunoglobulin receptor. By means of phenotypic analysis
View Publication
产品类型:
产品号#:
15024
15064
产品名:
RosetteSep™ 人B细胞富集抗体混合物
RosetteSep™人B细胞富集抗体混合物
Rezania A et al. (NOV 2013)
STEM CELLS 31 11 2432--2442
Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo
Human embryonic stem cells (hESCs) are considered a potential alternative to cadaveric islets as a source of transplantable cells for treating patients with diabetes. We previously described a differentiation protocol to generate pancreatic progenitor cells from hESCs,composed of mainly pancreatic endoderm (PDX1/NKX6.1-positive),endocrine precursors (NKX2.2/synaptophysin-positive,hormone/NKX6.1-negative),and polyhormonal cells (insulin/glucagon-positive,NKX6.1-negative). However,the relative contributions of NKX6.1-negative versus NKX6.1-positive cell fractions to the maturation of functional β-cells remained unclear. To address this question,we generated two distinct pancreatic progenitor cell populations using modified differentiation protocols. Prior to transplant,both populations contained a high proportion of PDX1-expressing cells (˜85%-90%) but were distinguished by their relatively high (˜80%) or low (˜25%) expression of NKX6.1. NKX6.1-high and NKX6.1-low progenitor populations were transplanted subcutaneously within macroencapsulation devices into diabetic mice. Mice transplanted with NKX6.1-low cells remained hyperglycemic throughout the 5-month post-transplant period whereas diabetes was reversed in NKX6.1-high recipients within 3 months. Fasting human C-peptide levels were similar between groups throughout the study,but only NKX6.1-high grafts displayed robust meal-,glucose- and arginine-responsive insulin secretion as early as 3 months post-transplant. NKX6.1-low recipients displayed elevated fasting glucagon levels. Theracyte devices from both groups contained almost exclusively pancreatic endocrine tissue,but NKX6.1-high grafts contained a greater proportion of insulin-positive and somatostatin-positive cells,whereas NKX6.1-low grafts contained mainly glucagon-expressing cells. Insulin-positive cells in NKX6.1-high,but not NKX6.1-low grafts expressed nuclear MAFA. Collectively,this study demonstrates that a pancreatic endoderm-enriched population can mature into highly functional β-cells with only a minor contribution from the endocrine subpopulation.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Ko J-Y et al. (AUG 2014)
Stem cells and development 23 15 1788--1797
Osteogenesis from human induced pluripotent stem cells: an in vitro and in vivo comparison with mesenchymal stem cells.
The purpose of this study was to examine the in vitro and in vivo osteogenic potential of human induced pluripotent stem cells (hiPSCs) against that of human bone marrow mesenchymal stem cells (hBMMSCs). Embryoid bodies (EBs),which were formed from undifferentiated hiPSCs,were dissociated into single cells and underwent osteogenic differentiation using the same medium as hBMMSCs for 14 days. Osteoinduced hiPSCs were implanted on the critical-size calvarial defects and long bone segmental defects in rats. The healing of defects was evaluated after 8 weeks and 12 weeks of implantation,respectively. Osteoinduced hiPSCs showed relatively lower and delayed in vitro expressions of the osteogenic marker COL1A1 and bone sialoprotein,as well as a weaker osteogenic differentiation through alkaline phosphatase staining and mineralization through Alizarin red staining compared with hBMMSCs. Calvarial defects treated with osteoinduced hiPSCs had comparable quality of new bone formation,including full restoration of bone width and robust formation of trabeculae,to those treated with hBMMSCs. Both osteoinduced hiPSCs and hBMMSCs persisted in regenerated bone after 8 weeks of implantation. In critical-size long bone segmental defects,osteoinduced hiPSC treatment also led to healing of segmental defects comparable to osteoinduced hBMMSC treatment after 12 weeks. In conclusion,despite delayed in vitro osteogenesis,hiPSCs have an in vivo osteogenic potential as good as hBMMSCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Lee J-HJBJH et al. (APR 2015)
Stem Cells 33 4 1142--1152
Reversible lineage-specific priming of human embryonic stem cells can be exploited to optimize the yield of differentiated cells.
The clinical use of human embryonic stem cells (hESCs) requires efficient cellular expansion that must be paired with an ability to generate specialized progeny through differentiation. Self-renewal and differentiation are deemed inherent hallmarks of hESCs and a growing body of evidence suggests that initial culture conditions dictate these two aspects of hESC behavior. Here,we reveal that defined culture conditions using commercial mTeSR1 media augment the expansion of hESCs and enhance their capacity for neural differentiation at the expense of hematopoietic lineage competency without affecting pluripotency. This culture-induced modification was shown to be reversible,as culture in mouse embryonic fibroblast-conditioned media (MEF-CM) in subsequent passages allowed mTeSR1-expanded hESCs to re-establish hematopoietic differentiation potential. Optimal yield of hematopoietic cells can be achieved by expansion in mTeSR1 followed by a recovery period in MEF-CM. Furthermore,the lineage propensity to hematopoietic and neural cell types could be predicted via analysis of surrogate markers expressed by hESCs cultured in mTeSR1 versus MEF-CM,thereby circumventing laborious in vitro differentiation assays. Our study reveals that hESCs exist in a range of functional states and balance expansion with differentiation potential,which can be modulated by culture conditions in a predictive and quantitative manner. Stem Cells 2015;33:1142-1152.
View Publication
Schwarz A et al. (MAY 1995)
The Journal of biological chemistry 270 18 10990--8
A regulatory role for sphingolipids in neuronal growth. Inhibition of sphingolipid synthesis and degradation have opposite effects on axonal branching.
Sphingolipids,particularly gangliosides,are enriched in neuronal membranes where they have been implicated as mediators of various regulatory events. We recently provided evidence that sphingolipid synthesis is necessary to maintain neuronal growth by demonstrating that in hippocampal neurons,inhibition of ceramide synthesis by Fumonisin B1 (FB1) disrupted axonal outgrowth (Harel,R. and Futerman,A. H. (1993) J. Biol. Chem. 268,14476-14481). We now analyze further the relationship between neuronal growth and sphingolipid metabolism by examining the effect of an inhibitor of glucosylceramide synthesis,D-threo-1-phenyl-2-decanoylamino-3-morpholino-1- propanol (PDMP) and by examining the effects of both FB1 and PDMP at various stages of neuronal development. No effects of FB1 or PDMP were observed during the first 2 days in culture,but by day 3 axonal morphology was significantly altered,irrespective of the time of addition of the inhibitors to the cultures. Cells incubated with FB1 or PDMP had a shorter axon plexus and less axonal branches. FB1 appeared to cause a retraction of axonal branches between days 2 and 3,although long term incubation had no apparent effect on neuronal morphology or on the segregation of axonal or dendritic proteins. In contrast,incubation of neurons with conduritol B-epoxide,an inhibitor of glucosylceramide degradation,caused an increase in the number of axonal branches and a corresponding increase in the length of the axon plexus. A direct correlation was observed between the number of axonal branch points per cell and the extent of inhibition of either sphingolipid synthesis or degradation. These results suggest that sphingolipids play an important role in the formation or stabilization of axonal branches.
View Publication