Boheler KR et al. (AUG 2002)
Circulation research 91 3 189--201
Differentiation of pluripotent embryonic stem cells into cardiomyocytes.
Embryonic stem (ES) cells have been established as permanent lines of undifferentiated pluripotent cells from early mouse embryos. ES cells provide a unique system for the genetic manipulation and the creation of knockout strains of mice through gene targeting. By cultivation in vitro as 3D aggregates called embryoid bodies,ES cells can differentiate into derivatives of all 3 primary germ layers,including cardiomyocytes. Protocols for the in vitro differentiation of ES cells into cardiomyocytes representing all specialized cell types of the heart,such as atrial-like,ventricular-like,sinus nodal-like,and Purkinje-like cells,have been established. During differentiation,cardiac-specific genes as well as proteins,receptors,and ion channels are expressed in a developmental continuum,which closely recapitulates the developmental pattern of early cardiogenesis. Exploitation of ES cell-derived cardiomyocytes has facilitated the analysis of early cardiac development and has permitted in vitro gain-of-function" or "loss-of-function" genetic studies. Recently
View Publication
产品类型:
产品号#:
06902
06952
00321
00322
00323
00324
00325
产品名:
Miyoshi N et al. (JAN 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 1 40--5
Defined factors induce reprogramming of gastrointestinal cancer cells.
Although cancer is a disease with genetic and epigenetic origins,the possible effects of reprogramming by defined factors remain to be fully understood. We studied the effects of the induction or inhibition of cancer-related genes and immature status-related genes whose alterations have been reported in gastrointestinal cancer cells. Retroviral-mediated introduction of induced pluripotent stem (iPS) cell genes was necessary for inducing the expression of immature status-related proteins,including Nanog,Ssea4,Tra-1-60,and Tra-1-80 in esophageal,stomach,colorectal,liver,pancreatic,and cholangiocellular cancer cells. Induced cells,but not parental cells,possessed the potential to express morphological patterns of ectoderm,mesoderm,and endoderm,which was supported by epigenetic studies,indicating methylation of DNA strands and the histone H3 protein at lysine 4 in promoter regions of pluripotency-associated genes such as NANOG. In in vitro analysis induced cells showed slow proliferation and were sensitized to differentiation-inducing treatment,and in vivo tumorigenesis was reduced in NOD/SCID mice. This study demonstrated that pluripotency was manifested in induced cells,and that the induced pluripotent cancer (iPC) cells were distinct from natural cancer cells with regard to their sensitivity to differentiation-inducing treatment. Retroviral-mediated introduction of iPC cells confers higher sensitivity to chemotherapeutic agents and differentiation-inducing treatment.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Ben-David U and Benvenisty N (MAR 2014)
Nature protocols 9 3 729--740
Chemical ablation of tumor-initiating human pluripotent stem cells.
The tumorigenicity of human pluripotent stem cells (hPSCs) is widely acknowledged as a major obstacle that withholds their application in regenerative medicine. This protocol describes two efficient and robust ways to chemically eliminate the tumor-initiating hPSCs from monolayer culture. The protocol details how to maintain and differentiate hPSCs,how to apply chemical inhibitors to cultures of hPSCs and their differentiated progeny,and how to assess the purity of the resultant cell cultures using in vitro and in vivo assays. It also describes how to rescue the cytotoxic effect. The elimination and the rescue assay can be completed within 3-5 d,the in vitro assessment requires another day,and the in vivo assessment requires up to 12 additional weeks.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Ichida JK et al. (AUG 2014)
Nature chemical biology 10 8 632--9
Notch inhibition allows oncogene-independent generation of iPS cells.
The reprogramming of somatic cells to pluripotency using defined transcription factors holds great promise for biomedicine. However,human reprogramming remains inefficient and relies either on the use of the potentially dangerous oncogenes KLF4 and CMYC or the genetic inhibition of the tumor suppressor gene p53. We hypothesized that inhibition of signal transduction pathways that promote differentiation of the target somatic cells during development might relieve the requirement for non-core pluripotency factors during induced pluripotent stem cell (iPSC) reprogramming. Here,we show that inhibition of Notch greatly improves the efficiency of iPSC generation from mouse and human keratinocytes by suppressing p21 in a p53-independent manner and thereby enriching for undifferentiated cells capable of long-term self-renewal. Pharmacological inhibition of Notch enabled routine production of human iPSCs without KLF4 and CMYC while leaving p53 activity intact. Thus,restricting the development of somatic cells by altering intercellular communication enables the production of safer human iPSCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
73092
85850
85857
85870
85875
产品名:
DBZ
mTeSR™1
mTeSR™1
Ishizawa K et al. (SEP 2010)
Cell stem cell 7 3 279--82
Tumor-initiating cells are rare in many human tumors.
Tumor-initiating cells (TICs) are defined by their ability to form tumors after xenotransplantation in immunodeficient mice and appear to be relatively rare in most human cancers. Recent data in melanoma indicate that the frequency of TICs increases dramatically via more permissive xenotransplantation conditions,raising the possibility that the true frequency of TICs has been greatly underestimated in most human tumors. We compared the growth of human pancreatic,non-small cell lung,and head and neck carcinomas in NOD/SCID and NSG mice. Although TIC frequency was detected up to 10-fold higher in NSG mice,it remained low (textless1 in 2500 cells) in all cases. Moreover,aldehyde dehydrogenase-positive (ALDH(+)) and CD44(+)CD24(+) cells,phenotypically distinct cells enriched in TICs,were equally tumorigenic in NOD/SCID and NSG mice. Our findings demonstrate that TICs are rare in these cancers and that the identification of TICs and their frequency in other human malignancies should be validated via primary tumors and highly permissive xenotransplantation conditions.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Kurian L et al. (JAN 2013)
Nature methods 10 1 77--83
Conversion of human fibroblasts to angioblast-like progenitor cells.
Lineage conversion of one somatic cell type to another is an attractive approach for generating specific human cell types. Lineage conversion can be direct,in the absence of proliferation and multipotent progenitor generation,or indirect,by the generation of expandable multipotent progenitor states. We report the development of a reprogramming methodology in which cells transition through a plastic intermediate state,induced by brief exposure to reprogramming factors,followed by differentiation. We use this approach to convert human fibroblasts to mesodermal progenitor cells,including by non-integrative approaches. These progenitor cells demonstrated bipotent differentiation potential and could generate endothelial and smooth muscle lineages. Differentiated endothelial cells exhibited neo-angiogenesis and anastomosis in vivo. This methodology for indirect lineage conversion to angioblast-like cells adds to the armamentarium of reprogramming approaches aimed at the study and treatment of ischemic pathologies.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Ward E et al. (MAY 2017)
Stem cells and development
Feeder-Free Derivation of Naïve Human Pluripotent Stem Cells.
Human pluripotent stem cells (HPSCs) cultured in conditions that maintain pluripotency via FGF and TGFβ signaling have been described as being in a primed state. These cells have been shown to exhibit characteristics more closely related to mouse epiblast-derived stem cells than to so called naïve mouse PSCs said to possess a more ground state pluripotency that mimics the early mouse embryo inner cell mass. Initial attempts to create culture conditions favorable for generation of naïve HPSCs from primed HPSCs has required the use of mouse embryonic fibroblasts as a feeder layer to support this transition. A protocol for the routine derivation and maintenance of naïve HPSCs in completely defined conditions is highly desirable for stem cell researchers to enhance the study and clinical translation of naïve HPSCs. Here we describe a standard protocol for transitioning primed HPSCs to a naïve state using commercial RSet media and xeno-free recombinant vitronectin.
View Publication