Kazakou et al. (Aug 2025)
Nature Communications 16
Metformin alters mitochondria-related metabolism and enhances human oligodendrocyte function
Metformin rejuvenates adult rat oligodendrocyte progenitor cells (OPCs) allowing more efficient differentiation into oligodendrocytes and improved remyelination,and therefore is of interest as a therapeutic in demyelinating diseases such as multiple sclerosis (MS). Here,we test whether metformin has a similar effect in human stem cell derived-OPCs. We assess how well human monoculture,organoid and chimera model culture systems simulate in vivo adult human oligodendrocytes,finding most close resemblance in the chimera model. Metformin increases myelin proteins and/or sheaths in all models even when human cells remain fetal-like. In the chimera model,metformin leads to increased mitochondrial area both in the human transplanted cells and in the mouse axons with associated increase of mitochondrial function/metabolism transcripts. Human oligodendrocytes from MS brain donors treated pre-mortem with metformin also express similar transcripts. Metformin’s brain effect is thus not cell-specific,alters metabolism in part through mitochondrial changes and leads to more myelin production. This bodes well for clinical trials testing metformin for neuroprotection. Subject terms: Oligodendrocyte,Multiple sclerosis,Multiple sclerosis,Regeneration and repair in the nervous system
View Publication
产品类型:
产品号#:
34811
34815
34821
34825
34850
34860
产品名:
AggreWell™ 800 24孔板,1个
AggreWell™ 800 24孔板,5个
AggreWell™ 800 6孔板,1个
AggreWell™ 800 6孔板,5个
AggreWell™ 800 24孔板启动套装
AggreWell™ 800 6孔板启动套装
J. Xu et al. ( 2019)
eLife 8
Human perivascular stem cell-derived extracellular vesicles mediate bone repair.
The vascular wall is a source of progenitor cells that are able to induce skeletal repair,primarily by paracrine mechanisms. Here,the paracrine role of extracellular vesicles (EVs) in bone healing was investigated. First,purified human perivascular stem cells (PSCs) were observed to induce mitogenic,pro-migratory,and pro-osteogenic effects on osteoprogenitor cells while in non-contact co-culture via elaboration of EVs. PSC-derived EVs shared mitogenic,pro-migratory,and pro-osteogenic properties of their parent cell. PSC-EV effects were dependent on surface-associated tetraspanins,as demonstrated by EV trypsinization,or neutralizing antibodies for CD9 or CD81. Moreover,shRNA knockdown in recipient cells demonstrated requirement for the CD9/CD81 binding partners IGSF8 and PTGFRN for EV bioactivity. Finally,PSC-EVs stimulated bone repair,and did so via stimulation of skeletal cell proliferation,migration,and osteodifferentiation. In sum,PSC-EVs mediate the same tissue repair effects of perivascular stem cells,and represent an 'off-the-shelf' alternative for bone tissue regeneration.
View Publication
产品类型:
产品号#:
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
McDevitt MA et al. (MAY 2006)
The Journal of experimental medicine 203 5 1185--96
A critical role for the host mediator macrophage migration inhibitory factor in the pathogenesis of malarial anemia.
The pathogenesis of malarial anemia is multifactorial,and the mechanisms responsible for its high mortality are poorly understood. Studies indicate that host mediators produced during malaria infection may suppress erythroid progenitor development (Miller,K.L.,J.C. Schooley,K.L. Smith,B. Kullgren,L.J. Mahlmann,and P.H. Silverman. 1989. Exp. Hematol. 17:379-385; Yap,G.S.,and M.M. Stevenson. 1991. Ann. NY Acad. Sci. 628:279-281). We describe an intrinsic role for macrophage migration inhibitory factor (MIF) in the development of the anemic complications and bone marrow suppression that are associated with malaria infection. At concentrations found in the circulation of malaria-infected patients,MIF suppressed erythropoietin-dependent erythroid colony formation. MIF synergized with tumor necrosis factor and gamma interferon,which are known antagonists of hematopoiesis,even when these cytokines were present in subinhibitory concentrations. MIF inhibited erythroid differentiation and hemoglobin production,and it antagonized the pattern of mitogen-activated protein kinase phosphorylation that normally occurs during erythroid progenitor differentiation. Infection of MIF knockout mice with Plasmodium chabaudi resulted in less severe anemia,improved erythroid progenitor development,and increased survival compared with wild-type controls. We also found that human mononuclear cells carrying highly expressed MIF alleles produced more MIF when stimulated with the malarial product hemozoin compared with cells carrying low expression MIF alleles. These data suggest that polymorphisms at the MIF locus may influence the levels of MIF produced in the innate response to malaria infection and the likelihood of anemic complications.
View Publication
产品类型:
产品号#:
03334
产品名:
MethoCult™M3334
(Nov 2024)
International Journal of Molecular Sciences 25 23
Human-Induced Pluripotent Stem Cell-Derived Neural Organoids as a Novel In Vitro Platform for Developmental Neurotoxicity Assessment
There has been a recent drive to replace in vivo studies with in vitro studies in the field of toxicity testing. Therefore,instead of conventional animal or planar cell culture models,there is an urgent need for in vitro systems whose conditions can be strictly controlled,including cell–cell interactions and sensitivity to low doses of chemicals. Neural organoids generated from human-induced pluripotent stem cells (iPSCs) are a promising in vitro platform for modeling human brain development. In this study,we developed a new tool based on various iPSCs to study and predict chemical-induced toxicity in humans. The model displayed several neurodevelopmental features and showed good reproducibility,comparable to that of previously published models. The results revealed that basic fibroblast growth factor plays a key role in the formation of the embryoid body,as well as complex neural networks and higher-order structures such as layered stacking. Using organoid models,pesticide toxicities were assessed. Cells treated with low concentrations of rotenone underwent apoptosis to a greater extent than those treated with high concentrations of rotenone. Morphological changes associated with the development of neural progenitor cells were observed after exposure to low doses of chlorpyrifos. These findings suggest that the neuronal organoids developed in this study mimic the developmental processes occurring in the brain and nerves and are a useful tool for evaluating drug efficacy,safety,and toxicity.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
(Feb 2024)
The Journal of Cell Biology 223 5
VPS13C regulates phospho-Rab10-mediated lysosomal function in human dopaminergic neurons
Using live-cell microscopy,we find that loss of VPS13C in human neurons disrupts lysosomal morphology and dynamics with increased inter-lysosomal tethers,leading to impaired lysosomal motility and defective lysosomal function as well as a decreased phospho-Rab10-mediated lysosomal stress response. Loss-of-function mutations in VPS13C are linked to early-onset Parkinson’s disease (PD). While VPS13C has been previously studied in non-neuronal cells,the neuronal role of VPS13C in disease-relevant human dopaminergic neurons has not been elucidated. Using live-cell microscopy,we investigated the role of VPS13C in regulating lysosomal dynamics and function in human iPSC-derived dopaminergic neurons. Loss of VPS13C in dopaminergic neurons disrupts lysosomal morphology and dynamics with increased inter-lysosomal contacts,leading to impaired lysosomal motility and cellular distribution,as well as defective lysosomal hydrolytic activity and acidification. We identified Rab10 as a phospho-dependent interactor of VPS13C on lysosomes and observed a decreased phospho-Rab10-mediated lysosomal stress response upon loss of VPS13C. These findings highlight an important role of VPS13C in regulating lysosomal homeostasis in human dopaminergic neurons and suggest that disruptions in Rab10-mediated lysosomal stress response contribute to disease pathogenesis in VPS13C-linked PD.
View Publication
Gamma-Secretase Represents a Therapeutic Target for the Treatment of Invasive Glioma Mediated by the p75 Neurotrophin Receptor
The multifunctional signaling protein p75 neurotrophin receptor (p75(NTR)) is a central regulator and major contributor to the highly invasive nature of malignant gliomas. Here,we show that neurotrophin-dependent regulated intramembrane proteolysis (RIP) of p75(NTR) is required for p75(NTR)-mediated glioma invasion,and identify a previously unnamed process for targeted glioma therapy. Expression of cleavage-resistant chimeras of p75(NTR) or treatment of animals bearing p75(NTR)-positive intracranial tumors with clinically applicable gamma-secretase inhibitors resulted in dramatically decreased glioma invasion and prolonged survival. Importantly,proteolytic processing of p75(NTR) was observed in p75(NTR)-positive patient tumor specimens and brain tumor initiating cells. This work highlights the importance of p75(NTR) as a therapeutic target,suggesting that gamma-secretase inhibitors may have direct clinical application for the treatment of malignant glioma.
View Publication
产品类型:
产品号#:
05750
05751
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
J. Zhou et al. (Sep 2025)
Alzheimer's Research & Therapy 17
A novel electric field approach for improving cognitive function through ameliorating cell-specific pathology in P301S tauopathy mice
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder,with no effective treatment currently available. Recently,non-pharmacological therapy,especially gamma frequency stimulation has shown promising therapeutic effects in Alzheimer’s disease (AD) mouse models. Electric field (EF) is a non-invasive biophysical approach for neuronal protection. However,whether EF is beneficial in AD neuropathology remains unknown. In this study,we exposed the P301S tauopathy mouse model to EF at gamma frequency on the head. We demonstrated that EF treatment significantly improved the cognitive impairments in the P301S mice. This was accompanied by reduced tau pathologies,suppressed microglial activation,neuroinflammation and oxidative stress in the tauopathy mouse brain. Moreover,EF treatment induced cell-specific responses in neural cells,with neurons being more susceptible,followed by microglia and oligodendrocytes. EF also had favorable effects on synaptic protein in neurons,inflammatory response and complement signaling in microglia,and myelination in oligodendrocytes. This study provides strong evidence that EF at gamma frequency may have great potential to be a novel therapeutic intervention for P301S by attenuating neuropathology and offering neuroprotection.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13195-025-01859-8.
View Publication
产品类型:
产品号#:
18970
18970RF
产品名:
EasySep™小鼠CD11b正选试剂盒II
RoboSep™ 小鼠CD11b正选试剂盒II
(Apr 2024)
Frontiers in Cell and Developmental Biology 12 2
Airway basal cells from human-induced pluripotent stem cells: a new frontier in cystic fibrosis research
Human-induced airway basal cells (hiBCs) derived from human-induced pluripotent stem cells (hiPSCs) offer a promising cell model for studying lung diseases,regenerative medicine,and developing new gene therapy methods. We analyzed existing differentiation protocols and proposed our own protocol for obtaining hiBCs,which involves step-by-step differentiation of hiPSCs into definitive endoderm,anterior foregut endoderm,NKX2.1+ lung progenitors,and cultivation on basal cell medium with subsequent cell sorting using the surface marker CD271 (NGFR). We derived hiBCs from two healthy cell lines and three cell lines with cystic fibrosis (CF). The obtained hiBCs,expressing basal cell markers (NGFR,KRT5,and TP63),could differentiate into lung organoids (LOs). We demonstrated that LOs derived from hiBCs can assess cystic fibrosis transmembrane conductance regulator (CFTR) channel function using the forskolin-induced swelling (FIS) assay. We also carried out non-viral (electroporation) and viral (recombinant adeno-associated virus (rAAV)) serotypes 6 and 9 and recombinant adenovirus (rAdV) serotype 5 transgene delivery to hiBCs and showed that rAAV serotype 6 is most effective against hiBCs,potentially applicable for gene therapy research.
View Publication
产品类型:
产品号#:
05001
05021
05022
05040
05990
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
PneumaCult™-Ex Plus 培养基
TeSR™-E8™
J. A. Kushner et al. (nov 2014)
Cell stem cell 15 5 535--6
Stem cells to insulin secreting cells: two steps forward and now a time to pause?
Two groups recently reported the in vitro differentiation of human embryonic stem cells into insulin-secreting cells,achieving an elusive goal for regenerative medicine. Herein we provide a perspective regarding these developments,compare phenotypes of the insulin-containing cells to human $\beta$ cells,and discuss implications for type 1 diabetes research and clinical care.
View Publication
产品类型:
产品号#:
100-0566
产品名:
R428
Kokkinaki M et al. (MAY 2011)
Stem Cells 29 5 825--35
Human induced pluripotent stem-derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE.
Age-related macular degeneration (AMD) is one of the major causes of blindness in aging population that progresses with death of retinal pigment epithelium (RPE) and photoreceptor degeneration inducing impairment of central vision. Discovery of human induced pluripotent stem (hiPS) cells has opened new avenues for the treatment of degenerative diseases using patient-specific stem cells to generate tissues and cells for autologous cell-based therapy. Recently,RPE cells were generated from hiPS cells. However,there is no evidence that those hiPS-derived RPE possess specific RPE functions that fully distinguish them from other types of cells. Here,we show for the first time that RPE generated from hiPS cells under defined conditions exhibit ion transport,membrane potential,polarized vascular endothelial growth factor secretion,and gene expression profile similar to those of native RPE. The hiPS-RPE could therefore be a very good candidate for RPE replacement therapy in AMD. However,these cells show rapid telomere shortening,DNA chromosomal damage,and increased p21 expression that cause cell growth arrest. This rapid senescence might affect the survival of the transplanted cells in vivo and therefore,only the very early passages should be used for regeneration therapies. Future research needs to focus on the generation of safe" as well as viable hiPS-derived somatic cells."
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Gilbert C et al. (JUL 2007)
Journal of virology 81 14 7672--82
Human immunodeficiency virus type 1 replication in dendritic cell-T-cell cocultures is increased upon incorporation of host LFA-1 due to higher levels of virus production in immature dendritic cells.
Dendritic cells (DCs) act as a portal for invasion by human immunodeficiency virus type-1 (HIV-1). Here,we investigated whether virion-incorporated host cell membrane proteins can affect virus replication in DC-T-cell cocultures. Using isogenic viruses either devoid of or bearing host-derived leukocyte function-associated antigen 1 (LFA-1),we showed that HIV-1 production is augmented when LFA-1-bearing virions are used compared to that for viral entities lacking this adhesion molecule. This phenomenon was observed in immature monocyte-derived DCs (IM-MDDCs) only and not in DCs displaying a mature phenotype. The increase is not due to higher virus production in responder CD4(+) T cells but rather is linked with a more important productive infection of IM-MDDCs. We provided evidence that virus-associated host LFA-1 molecules do not affect a late event in the HIV-1 life cycle but rather exert an effect on an early step in virus replication. We demonstrated that the enhancement of productive infection of IM-MDDCs that is conferred by virus-anchored host LFA-1 involves the protein kinase A (PKA) and PKC signal transduction pathways. The biological significance of this phenomenon was established by performing experiments with virus stocks produced in primary human cells and anti-LFA-1 antibodies. Together,our results indicate that the association between some virus-bound host proteins and their natural cognate ligands can modulate de novo HIV-1 production by IM-MDDCs. Therefore,the additional interactions between virus-bound host cell membrane constituents and counter receptors on the surfaces of DCs can influence HIV-1 replication in IM-MDDC-T-cell cocultures.
View Publication