Donangelo I et al. (JAN 2014)
Endocrine Related Cancer 21 2 203--216
Sca1+ murine pituitary adenoma cells show tumor-growth advantage
The role of tumor stem cells in benign tumors such as pituitary adenomas remains unclear. In this study,we investigated whether the cells within pituitary adenomas that spontaneously develop in Rb+/- mice are hierarchically distributed with a subset being responsible for tumor growth. Cells derived directly from such tumors grew as spheres in serum-free culture medium supplemented with epidermal growth factor and basic fibroblast growth factor. Some cells within growing pituitary tumor spheres (PTS) expressed common stem cell markers (Sca1,Sox2,Nestin,and CD133),but were devoid of hormone-positive differentiated cells. Under subsequent differentiating conditions (matrigel-coated growth surface),PTS expressed all six pituitary hormones. We next searched for specific markers of the stem cell population and isolated a Sca1(+) cell population that showed increased sphere formation potential,lower mRNA hormone expression,higher expression of stem cell markers (Notch1,Sox2,and Nestin),and increased proliferation rates. When transplanted into non-obese diabetic-severe combined immunodeficiency gamma mice brains,Sca1(+) pituitary tumor cells exhibited higher rates of tumor formation (brain tumors observed in 11/11 (100%) vs 7/12 (54%) of mice transplanted with Sca1(+) and Sca1(-) cells respectively). Magnetic resonance imaging and histological analysis of brain tumors showed that tumors derived from Sca1(+) pituitary tumor cells were also larger and plurihormonal. Our findings show that Sca1(+) cells derived from benign pituitary tumors exhibit an undifferentiated expression profile and tumor-proliferative advantages,and we propose that they could represent putative pituitary tumor stem/progenitor cells.
View Publication
产品类型:
产品号#:
05700
05702
产品名:
NeuroCult™ 基础培养基(小鼠&大鼠)
NeuroCult™ 扩增试剂盒 (小鼠&大鼠)
J. W. Foster et al. (JAN 2017)
Scientific reports 7 41286
Cornea organoids from human induced pluripotent stem cells.
The cornea is the transparent outermost surface of the eye,consisting of a stratified epithelium,a collagenous stroma and an innermost single-cell layered endothelium and providing 2/3 of the refractive power of the eye. Multiple diseases of the cornea arise from genetic defects where the ultimate phenotype can be influenced by cross talk between the cell types and the extracellular matrix. Cell culture modeling of diseases can benefit from cornea organoids that include multiple corneal cell types and extracellular matrices. Here we present human iPS cell-derived organoids through sequential rounds of differentiation programs. These organoids share features of the developing cornea,harboring three distinct cell types with expression of key epithelial,stromal and endothelial cell markers. Cornea organoid cultures provide a powerful 3D model system for investigating corneal developmental processes and their disruptions in diseased conditions.
View Publication
产品类型:
产品号#:
85850
85857
85870
85875
05835
05839
产品名:
mTeSR™1
mTeSR™1
STEMdiff™ 神经诱导培养基
STEMdiff™ 神经诱导培养基
F. Muhammad et al. (nov 2019)
Scientific reports 9 1 16941
Experimental autoimmune uveoretinitis (EAU) is a mouse model of human autoimmune uveitis marked by ocular autoantigen-specific regulatory immunity in the spleen. The melanocortin 5 receptor (MC5r) and adenosine 2 A receptor (A2Ar) are required for induction of post-EAU regulatory T cells (Tregs) which provide resistance to EAU. We show that blocking the PD-1/PD-L1 pathway prevented suppression of EAU by post-EAU Tregs. A2Ar induction of PD-1+FoxP3+ Tregs in uveitis patients was similar compared to healthy controls,but was significantly reduced with melanocortin stimulation. Further,lower body mass index correlated with responsiveness to stimulation of this pathway. These observations indicate an importance of the PD-1/PD-L1 pathway to provide resistance to relapsing uveitis and shows a reduced capacity of uveitis patients to induce Tregs when stimulated through melanocortin receptors,but that it is possible to bypass this part of the pathway through direct stimulation of A2Ar.
View Publication
产品类型:
产品号#:
10970
10990
15021
15061
产品名:
ImmunoCult™ 人CD3/CD28/CD2 T细胞激活剂
ImmunoCult™ 人CD3/CD28/CD2 T细胞激活剂
RosetteSep™人T细胞富集抗体混合物
RosetteSep™人T细胞富集抗体混合物
A. M. Herreno-Pachón et al. (May 2025)
International Journal of Molecular Sciences 26 9
Mucopolysaccharidosis (MPS) IVA is a bone-affecting lysosomal storage disease (LSD) caused by impaired degradation of the glycosaminoglycans (GAGs) keratan sulfate (KS) and chondroitin 6-sulfate (C6S) due to deficient N-acetylgalactosamine-6-sulfatase (GALNS) enzyme activity. Previously,we successfully developed and validated a CRISPR/nCas9-based gene therapy (GT) to insert an expression cassette at the AAVS1 and ROSA26 loci in human MPS IVA fibroblasts and MPS IVA mice,respectively. In this study,we have extended our approach to evaluate the effectiveness of our CRISPR/nCas9-based GT in editing human CD34+ cells to mediate cross-correction of MPS IVA fibroblasts. CD34+ cells were electroporated with the CRISPR/nCas9 system,targeting the AAVS1 locus. The nCas9-mediated on-target donor template insertion,and the stemness of the CRISPR/nCas-edited CD34+ cells was evaluated. Additionally,MPS IVA fibroblasts were co-cultured with CRISPR/nCas-edited CD34+ cells to assess cross-correction. CRISPR/nCas9-based gene editing did not affect the stemness of CD34+ cells but did lead to supraphysiological levels of the GALNS enzyme. Upon co-culture,MPS IVA fibroblasts displayed a significant increase in the GALNS enzyme activity along with lysosomal mass reduction,pro-oxidant profile amelioration,mitochondrial mass recovery,and pro-apoptotic and pro-inflammatory profile improvement. These results show the potential of our CRISPR/nCas9-based GT to edit CD34+ cells to mediate cross-correction.
View Publication
产品类型:
产品号#:
09600
09605
09650
09655
产品名:
StemSpan™ SFEM
StemSpan™ SFEM II
StemSpan™ SFEM
StemSpan™ SFEM II
Z. Liu et al. (nov 2020)
Cell 183 4 1117--1133.e19
Detecting Tumor Antigen-Specific T Cells via Interaction-Dependent Fucosyl-Biotinylation.
Re-activation and clonal expansion of tumor-specific antigen (TSA)-reactive T cells are critical to the success of checkpoint blockade and adoptive transfer of tumor-infiltrating lymphocyte (TIL)-based therapies. There are no reliable markers to specifically identify the repertoire of TSA-reactive T cells due to their heterogeneous composition. We introduce FucoID as a general platform to detect endogenous antigen-specific T cells for studying their biology. Through this interaction-dependent labeling approach,intratumoral TSA-reactive CD4+,CD8+ T cells,and TSA-suppressive CD4+ T cells can be detected and separated from bystander T cells based on their cell-surface enzymatic fucosyl-biotinylation. Compared to bystander TILs,TSA-reactive TILs possess a distinct T cell receptor (TCR) repertoire and unique gene features. Although exhibiting a dysfunctional phenotype,TSA-reactive CD8+ TILs possess substantial capabilities of proliferation and tumor-specific killing. Featuring genetic manipulation-free procedures and a quick turnover cycle,FucoID should have the potential of accelerating the pace of personalized cancer treatment.
View Publication
(Apr 2025)
Cancer Chemotherapy and Pharmacology 95 1
Neurofilament light chain as a marker for neuronal damage: integrating in vitro studies and clinical findings in patients with oxaliplatin-induced neuropathy
PurposeOxaliplatin-induced peripheral neuropathy (OIPN) is a chronic,debilitating late effect following oxaliplatin treatment. Neurofilament light chain (NfL) is a structural protein found in nerve axons that was investigated upon oxaliplatin exposure in vitro and in vivo correlated to symptoms of OIPN in colorectal cancer patients receiving oxaliplatin.MethodsHuman sensory neurons,derived from induced pluripotent stem cells,were exposed to clinically relevant concentrations of oxaliplatin in vitro,with NfL concentrations measured in the cell medium. The prospective clinical study included patients with colorectal cancer undergoing chemotherapy therapy with or without oxaliplatin. Possible OIPN was defined as bilateral presence of numbness and/or presence of pricking sensations in the feet documented in an interview at the time of blood sampling prior to,3,and 6 months after initiating treatment.ResultsOxaliplatin exposure led to a dose-dependent NfL increase in vitro. In the clinical cohort of 30 patients (18 in the oxaliplatin group),NfL levels rose at 3 and 6 months compared to controls. NfL level changes correlated to OIPN symptoms at the 6-month timepoint (rho 0.81,p?0.001). However,the interindividual variation was substantial,and most patients showed only a minor increase in NfL.ConclusionBoth in vitro and clinical data indicate that oxaliplatin exposure results in elevated NfL levels. Further prospective studies are needed to evaluate NfL as an early biomarker for OIPN,specifically focusing on the timing of blood sampling during chemotherapy treatment to enable the timely reduction of oxaliplatin.Supplementary InformationThe online version contains supplementary material available at 10.1007/s00280-025-04773-w.
View Publication
Thein SL et al. (JUL 2007)
Proceedings of the National Academy of Sciences of the United States of America 104 27 11346--51
Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults.
Individual variation in fetal hemoglobin (HbF,alpha(2)gamma(2)) response underlies the remarkable diversity in phenotypic severity of sickle cell disease and beta thalassemia. HbF levels and HbF-associated quantitative traits (e.g.,F cell levels) are highly heritable. We have previously mapped a major quantitative trait locus (QTL) controlling F cell levels in an extended Asian-Indian kindred with beta thalassemia to a 1.5-Mb interval on chromosome 6q23,but the causative gene(s) are not known. The QTL encompasses several genes including HBS1L,a member of the GTP-binding protein family that is expressed in erythroid progenitor cells. In this high-resolution association study,we have identified multiple genetic variants within and 5' to HBS1L at 6q23 that are strongly associated with F cell levels in families of Northern European ancestry (P = 10(-75)). The region accounts for 17.6% of the F cell variance in northern Europeans. Although mRNA levels of HBS1L and MYB in erythroid precursors grown in vitro are positively correlated,only HBS1L expression correlates with high F cell alleles. The results support a key role for the HBS1L-related genetic variants in HbF control and illustrate the biological complexity of the mechanism of 6q QTL as a modifier of fetal hemoglobin levels in the beta hemoglobinopathies.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
Kawatsu K et al. (APR 2008)
Journal of clinical microbiology 46 4 1226--31
Development and evaluation of immunochromatographic assay for simple and rapid detection of Campylobacter jejuni and Campylobacter coli in human stool specimens.
An immunochromatographic assay (Campy-ICA) using a newly generated single monoclonal antibody against a 15-kDa cell surface protein of Campylobacter jejuni was developed. When cell suspensions of 86 C. jejuni strains and 27 Campylobacter coli strains were treated with a commercially available bacterial protein extraction reagent and the resulting extracts were tested with the Campy-ICA,they all yielded positive results. The minimum detectable limits for the C. jejuni strains ranged from 1.8 x 10(4) to 8.2 x 10(5) CFU/ml of cell suspension,and those for the C. coli strains ranged from 1.4 x 10(5) to 4.6 x 10(6) CFU/ml of cell suspension. All 26 non-Campylobacter species tested yielded negative results with the Campy-ICA. To evaluate the ability of the Campy-ICA to detect C. jejuni and C. coli in human stool specimens,suspensions of 222 stool specimens from patients with acute gastroenteritis were treated with the bacterial protein extraction reagent,and the resulting extracts were tested with the Campy-ICA. The Campy-ICA results showed a sensitivity of 84.8% (28 of 33 specimens) and a specificity of 100% (189 of 189 specimens) compared to the results of isolation of C. jejuni and C. coli from the stool specimens by a bacterial culture test. The Campy-ICA was simple to perform and was able to detect Campylobacter antigen in a fecal extract within 15 min. These results suggest that Campy-ICA testing of fecal extracts may be useful as a simple and rapid adjunct to stool culture for detecting C. jejuni and C. coli in human stool specimens.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
产品名:
ClonaCell™-HY 杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY PEG (融合)
Hang L et al. (AUG 2016)
Journal of immunology (Baltimore,Md. : 1950)
Downregulation of the Syk Signaling Pathway in Intestinal Dendritic Cells Is Sufficient To Induce Dendritic Cells That Inhibit Colitis.
Helminthic infections modulate host immunity and may protect people in less-developed countries from developing immunological diseases. In a murine colitis model,the helminth Heligmosomoides polygyrus bakeri prevents colitis via induction of regulatory dendritic cells (DCs). The mechanism driving the development of these regulatory DCs is unexplored. There is decreased expression of the intracellular signaling pathway spleen tyrosine kinase (Syk) in intestinal DCs from H. polygyrus bakeri-infected mice. To explore the importance of this observation,it was shown that intestinal DCs from DC-specific Syk(-/-) mice were powerful inhibitors of murine colitis,suggesting that loss of Syk was sufficient to convert these cells into their regulatory phenotype. DCs sense gut flora and damaged epithelium via expression of C-type lectin receptors,many of which signal through the Syk signaling pathway. It was observed that gut DCs express mRNA encoding for C-type lectin (CLEC) 7A,CLEC9A,CLEC12A,and CLEC4N. H. polygyrus bakeri infection downmodulated CLEC mRNA expression in these cells. Focusing on CLEC7A,which encodes for the dectin-1 receptor,flow analysis showed that H. polygyrus bakeri decreases dectin-1 expression on the intestinal DC subsets that drive Th1/Th17 development. DCs become unresponsive to the dectin-1 agonist curdlan and fail to phosphorylate Syk after agonist stimulation. Soluble worm products can block CLEC7A and Syk mRNA expression in gut DCs from uninfected mice after a brief in vitro exposure. Thus,downmodulation of Syk expression and phosphorylation in intestinal DCs could be important mechanisms through which helminths induce regulatory DCs that limit colitis.
View Publication
产品类型:
产品号#:
15028
15068
产品名:
RosetteSep™ 人单核细胞富集抗体混合物
RosetteSep™人单核细胞富集抗体混合物
Grimbert P et al. (SEP 2006)
Journal of immunology (Baltimore,Md. : 1950) 177 6 3534--41
Thrombospondin/CD47 interaction: a pathway to generate regulatory T cells from human CD4+ CD25- T cells in response to inflammation.
Thymus-derived CD4+ CD25+ T regulatory cells (Tregs) are essential for the maintenance of self-tolerance. What critical factors and conditions are required for the extra-thymic development of Tregs remains an important question. In this study,we show that the anti-inflammatory extracellular matrix protein,thrombospondin-1,promoted the generation of human peripheral regulatory T cells through the ligation of one of its receptor,CD47. CD47 stimulation by mAb or a thrombospondin-1 peptide induced naive or memory CD4+ CD25- T cells to become suppressive. The latter expressed increased amounts of CTLA-4,OX40,GITR,and Foxp3 and inhibited autologous Th0,Th1,and Th2 cells. Their regulatory activity was contact dependent,TGF-beta independent,and partially circumvented by IL-2. This previously unknown mechanism to induce human peripheral Tregs in response to inflammation may participate to the limitation of collateral damage induced by exacerbated responses to self or foreign Ags and thus be relevant for therapeutic intervention in autoimmune diseases and transplantation.
View Publication