Essential role for Ptpn11 in survival of hematopoietic stem and progenitor cells.
Src homology 2 domain-containing phosphatase 2 (Shp2),encoded by Ptpn11,is a member of the nonreceptor protein-tyrosine phosphatase family,and functions in cell survival,proliferation,migration,and differentiation in many tissues. Here we report that loss of Ptpn11 in murine hematopoietic cells leads to bone marrow aplasia and lethality. Mutant mice show rapid loss of hematopoietic stem cells (HSCs) and immature progenitors of all hematopoietic lineages in a gene dosage-dependent and cell-autonomous manner. Ptpn11-deficient HSCs and progenitors undergo apoptosis concomitant with increased Noxa expression. Mutant HSCs/progenitors also show defective Erk and Akt activation in response to stem cell factor and diminished thrombopoietin-evoked Erk activation. Activated Kras alleviates the Ptpn11 requirement for colony formation by progenitors and cytokine/growth factor responsiveness of HSCs,indicating that Ras is functionally downstream of Shp2 in these cells. Thus,Shp2 plays a critical role in controlling the survival and maintenance of HSCs and immature progenitors in vivo.
View Publication
产品类型:
产品号#:
03231
09600
09650
09850
产品名:
MethoCult™M3231
StemSpan™ SFEM
StemSpan™ SFEM
D. M. Shaw et al. (jan 2020)
European journal of applied physiology 120 1 191--202
Acute hyperketonaemia alters T-cell-related cytokine gene expression within stimulated peripheral blood mononuclear cells following prolonged exercise.
PURPOSE We investigated the effect of the racemic $\beta$-hydroxybutyrate precursor,R,S-1,3-butanediol (BD),on T-cell-related cytokine gene expression within stimulated peripheral blood mononuclear cells (PBMC) following prolonged,strenuous exercise. METHODS A repeated-measures,randomised,crossover study was conducted in nine healthy,trained male cyclists (age,26.7 ± 5.2 years; VO2peak,63.9 ± 2.5 mL kg-1 min-1). Participants ingested 0.35 g kg-1 of BD or placebo 30 min before and 60 min during 85 min of steady-state (SS) exercise,which preceded a {\~{}} 30 min time-trial (TT) (7 kJ kg-1). Blood samples were collected at pre-supplement,pre-exercise,post-SS,post-TT and 1-h post-TT. Whole blood cultures were stimulated with Staphylococcal enterotoxin B (SEB) for 24 h to determine T-cell-related interleukin (IL)-4,IL-10 and interferon (IFN)-$\gamma$ mRNA expression within isolated PBMCs in vitro. RESULTS Serum cortisol,total circulating leukocyte and lymphocyte,and T-cell subset concentrations were similar between trials during exercise and recovery (all p {\textgreater} 0.05). BD ingestion increased T-cell-related IFN-$\gamma$ mRNA expression compared with placebo throughout exercise and recovery (p = 0.011); however,IL-4 and IL-10 mRNA expression and the IFN-$\gamma$/IL-4 mRNA expression ratio were unaltered (all p {\textgreater} 0.05). CONCLUSION Acute hyperketonaemia appears to transiently amplify the initiation of the pro-inflammatory T-cell-related IFN-$\gamma$ response to an immune challenge in vitro during and following prolonged,strenuous exercise; suggesting enhanced type-1 T-cell immunity at the gene level.
View Publication
Interleukin-1-mediated hematopoietic cell regulation in the aorta-gonad-mesonephros region of the mouse embryo.
Hematopoiesis during development is a dynamic process,with many factors involved in the emergence and regulation of hematopoietic stem cells (HSCs) and progenitor cells. Whereas previous studies have focused on developmental signaling and transcription factors in embryonic hematopoiesis,the role of well-known adult hematopoietic cytokines in the embryonic hematopoietic system has been largely unexplored. The cytokine interleukin-1 (IL-1),best known for its proinflammatory properties,has radioprotective effects on adult bone marrow HSCs,induces HSC mobilization,and increases HSC proliferation and/or differentiation. Here we examine IL-1 and its possible role in regulating hematopoiesis in the midgestation mouse embryo. We show that IL-1,IL-1 receptors (IL-1Rs),and signaling mediators are expressed in the aorta-gonad-mesonephros (AGM) region during the time when HSCs emerge in this site. IL-1 signaling is functional in the AGM,and the IL-1RI is expressed ventrally in the aortic subregion by some hematopoietic,endothelial,and mesenchymal cells. In vivo analyses of IL-1RI-deficient embryos show an increased myeloid differentiation,concomitant with a slight decrease in AGM HSC activity. Our results suggest that IL-1 is an important homeostatic regulator at the earliest time of HSC development,acting to limit the differentiation of some HSCs along the myeloid lineage.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Ohmori T et al. (OCT 2010)
The Journal of biological chemistry 285 41 31763--73
Vinculin is indispensable for repopulation by hematopoietic stem cells, independent of integrin function.
Vinculin is a highly conserved actin-binding protein that is localized in integrin-mediated focal adhesion complexes. Although critical roles have been proposed for integrins in hematopoietic stem cell (HSC) function,little is known about the involvement of intracellular focal adhesion proteins in HSC functions. This study showed that the ability of c-Kit(+)Sca1(+)Lin(-) HSCs to support reconstitution of hematopoiesis after competitive transplantation was severely impaired by lentiviral transduction with short hairpin RNA sequences for vinculin. The potential of these HSCs to differentiate into granulocytic and monocytic lineages,to migrate toward stromal cell-derived factor 1α,and to home to the bone marrow in vivo were not inhibited by the loss of vinculin. However,the capacities to form long term culture-initiating cells and cobblestone-like areas were abolished in vinculin-silenced c-Kit(+)Sca1(+)Lin(-) HSCs. In contrast,adhesion to the extracellular matrix was inhibited by silencing of talin-1,but not of vinculin. Whole body in vivo luminescence analyses to detect transduced HSCs confirmed the role of vinculin in long term HSC reconstitution. Our results suggest that vinculin is an indispensable factor determining HSC repopulation capacity,independent of integrin functions.
View Publication
产品类型:
产品号#:
03231
03434
03444
05350
产品名:
MethoCult™M3231
MethoCult™GF M3434
MethoCult™GF M3434
Szilvassy SJ et al. (NOV 1990)
Proceedings of the National Academy of Sciences of the United States of America 87 22 8736--40
Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy.
Although hematopoiesis is known to originate in a population of very primitive cells with both lymphopoietic and myelopoietic potential,a procedure for enumerating such cells has to date not been available. We now describe a quantitative assay for long-term repopulating stem cells with the potential for reconstituting all hematopoietic lineages. This assay has two key features. The first is the use of competitive repopulation conditions that ensure not only the detection of a very primitive class of hematopoietic stem cells but also the survival of lethally irradiated mice transplanted with very low numbers of such cells. The second is the use of a limiting-dilution experimental design to allow stem cell quantitation. The assay involves transplanting limiting numbers of male test" cells into lethally irradiated syngeneic female recipients together with 1-2 x 10(5) syngeneic female marrow cells whose long-term repopulating ability has been compromised by two previous cycles of marrow transplantation. The proportion of assay recipients whose regenerated hematopoietic tissues are determined to contain greater than or equal to 5% cells of test cell origin (male) greater than or equal to 5 weeks later is then used to calculate the frequency of competitive repopulating units (CRU) in the original male test cell suspension (based on Poisson statistics). Investigation of this assay system has shown that all three potential sources of stem cells (test cells�
View Publication
Souroullas GP et al. (FEB 2009)
Cell stem cell 4 2 180--6
Adult hematopoietic stem and progenitor cells require either Lyl1 or Scl for survival.
Scl and Lyl1 encode two related basic-helix-loop-helix transcription factors implicated in T cell acute lymphoblastic leukemia. Previous studies showed that Scl is essential for embryonic and adult erythropoiesis,while Lyl1 is important for B cell development. Single-knockout mice have not revealed an essential function for Scl or Lyl1 in adult hematopoietic stem cells (HSCs). To determine if maintenance of HSCs in single-knockout mice is due to functional redundancy,we generated Lyl1;Scl-conditional double-knockout mice. Here,we report a striking genetic interaction between the two genes,with a clear dose dependence for the presence of Scl or Lyl1 alleles for HSC function. Bone marrow repopulation assays and analyses demonstrated rapid loss of hematopoietic progenitors due to apoptosis. The function of HSCs could be rescued by a single allele of Lyl1 but not Scl. These results show that expression of at least one of these factors is essential for maintenance of adult HSC function.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
L. Fr\'egeau-Proulx et al. ( 2022)
MethodsX 9 101843
FACS-Free isolation and purification protocol of mouse prostate epithelial cells for organoid primary culture.
The prostate is a gland that contributes to men's fertility. It is highly responsive to androgens and is often the site of carcinogenesis,as prostate cancer is the most frequent cancer in men in over a hundred countries. To study the normal prostate,few in vitro models exist,and most of them do not express the androgen receptor (AR). To overcome this issue,prostate epithelial cells can be grown in primary culture ex vivo in 2- and 3-dimensional culture (organoids). However,methods to purify these cells often require flow cytometry,thus necessitating specialized instruments and expertise. Herein,we present a detailed protocol for the harvest,purification,and primary culture of mouse prostate epithelial cells to grow prostate organoids ex vivo. This protocol does not require flow cytometry approaches,facilitating its implementation in most research laboratories,and organoids grown with this protocol are highly responsive to androgens. In summary,we present a new simple method that can be used to grow prostate organoids that recapitulate the androgen response of this gland in vivo.
View Publication