Traggiai E et al. (FEB 2008)
Stem cells (Dayton,Ohio) 26 2 562--9
Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients.
Human bone marrow multipotent mesenchymal stromal cells are progenitor cells that can be expanded in vitro and differentiate into various cells of mesodermal origin. They contribute to the bone marrow reticular niche,where mature B cells and long-lived plasma cells are maintained. Multipotent mesenchymal stromal cells were recently shown to modulate T- and B-cell proliferation and differentiation,dendritic cell maturation,and natural killer activity. These immunoregulatory properties encouraged a possible use of these cells to modulate autoimmune responses in humans. We studied the influence of bone marrow mesenchymal stem cells on highly purified B-cell subsets isolated from healthy donors and total B cells from pediatric systemic lupus erythematosus patients. Bone marrow mesenchymal stem cells promoted proliferation and differentiation into immunoglobulin-secreting cells of transitional and naive B cells stimulated with an agonist of Toll-like receptor 9,in the absence of B cell receptor triggering. They strongly enhanced proliferation and differentiation into plasma cells of memory B-cell populations. A similar effect was observed in response to polyclonal stimulation of B cells isolated from pediatric patients with systemic lupus erythematosus. This study casts important questions on bone marrow mesenchymal stem cells as a therapeutic tool in autoimmune diseases in which B-cell activation is crucially implicated in the pathogenesis of the disease.
View Publication
产品类型:
产品号#:
05401
05402
05411
产品名:
MesenCult™ MSC基础培养基 (人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
Huat T et al. (APR 2015)
International Journal of Molecular Sciences 16 5 9693--9718
MicroRNA Expression Profile of Neural Progenitor-Like Cells Derived from Rat Bone Marrow Mesenchymal Stem Cells under the Influence of IGF-1, bFGF and EGF
Insulin-like growth factor 1 (IGF-1) enhances cellular proliferation and reduces apoptosis during the early differentiation of bone marrow derived mesenchymal stem cells (BMSCs) into neural progenitor-like cells (NPCs) in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). BMSCs were differentiated in three groups of growth factors: (A) EGF + bFGF,(B) EGF + bFGF + IGF-1,and (C) without growth factor. To unravel the molecular mechanisms of the NPCs derivation,microarray analysis using GeneChip miRNA arrays was performed. The profiles were compared among the groups. Annotated microRNA fingerprints (GSE60060) delineated 46 microRNAs temporally up-regulated or down-regulated compared to group C. The expressions of selected microRNAs were validated by real-time PCR. Among the 46 microRNAs,30 were consistently expressed for minimum of two consecutive time intervals. In Group B,only miR-496 was up-regulated and 12 microRNAs,including the let-7 family,miR-1224,miR-125a-3p,miR-214,miR-22,miR-320,miR-708,and miR-93,were down-regulated. Bioinformatics analysis reveals that some of these microRNAs (miR-22,miR-214,miR-125a-3p,miR-320 and let-7 family) are associated with reduction of apoptosis. Here,we summarize the roles of key microRNAs associated with IGF-1 in the differentiation of BMSCs into NPCs. These findings may provide clues to further our understanding of the mechanisms and roles of microRNAs as key regulators of BMSC-derived NPC maintenance.
View Publication
产品类型:
产品号#:
05750
05751
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
N. Paiboon et al. ( 2019)
Stem cells international 2019 9748795
Gestational Tissue-Derived Human Mesenchymal Stem Cells Use Distinct Combinations of Bioactive Molecules to Suppress the Proliferation of Human Hepatoblastoma and Colorectal Cancer Cells.
Background Cancer has been considered a serious global health problem and a leading cause of morbidity and mortality worldwide. Despite recent advances in cancer therapy,treatments of advance stage cancers are mostly ineffective resulting in poor survival of patients. Recent evidences suggest that multipotent human mesenchymal stem cells (hMSCs) play important roles in growth and metastasis of several cancers by enhancing their engraftment and inducing tumor neovascularization. However,the effect of hMSCs on cancer cells is still controversial because there are also evidences demonstrating that hMSCs inhibited growth and metastasis of some cancers. Methods In this study,we investigated the effects of bioactive molecules released from bone marrow and gestational tissue-derived hMSCs on the proliferation of various human cancer cells,including C3A,HT29,A549,Saos-2,and U251. We also characterized the hMSC-derived factors that inhibit cancer cell proliferation by protein fractionation and mass spectrometry analysis. Results We herein make a direct comparison and show that the effects of hMSCs on cancer cell proliferation and migration depend on both hMSC sources and cancer cell types and cancer-derived bioactive molecules did not affect the cancer suppressive capacity of hMSCs. Moreover,hMSCs use distinct combination of bioactive molecules to suppress the proliferation of human hepatoblastoma and colorectal cancer cells. Using protein fractionation and mass spectrometry analysis,we have identified several novel hMSC-derived factors that might be able to suppress cancer cell proliferation. Conclusion We believe that the procedure developed in this study could be used to discover other therapeutically useful molecules released by various hMSC sources for a future in vivo study.
View Publication
产品类型:
产品号#:
05445
05448
产品名:
MesenCult™-ACF Plus培养基
MesenCult™-ACF Plus培养试剂盒
Park I-H et al. (JAN 2008)
Nature 451 7175 141--6
Reprogramming of human somatic cells to pluripotency with defined factors.
Pluripotency pertains to the cells of early embryos that can generate all of the tissues in the organism. Embryonic stem cells are embryo-derived cell lines that retain pluripotency and represent invaluable tools for research into the mechanisms of tissue formation. Recently,murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4,Sox2,Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Using these same factors,we have derived iPS cells from fetal,neonatal and adult human primary cells,including dermal fibroblasts isolated from a skin biopsy of a healthy research subject. Human iPS cells resemble embryonic stem cells in morphology and gene expression and in the capacity to form teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogramme human cells to pluripotency,and establish a method whereby patient-specific cells might be established in culture.
View Publication
产品类型:
产品号#:
04434
04444
05860
05880
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
mTeSR™1
mTeSR™1
Goodridge JP et al. (AUG 2003)
Journal of immunology (Baltimore,Md. : 1950) 171 4 1768--74
KIR2DL4 (CD158d) genotype influences expression and function in NK cells.
The expression and function of the NK cell receptor KIR2DL4 are controversial. Two common alleles of the transmembrane domain of KIR2DL4 exist. The 10A allele with 10 adenines at the end of the transmembrane exon encodes a full length receptor,whereas the 9A allele has only 9 adenines resulting in a frame shift which in turn generates a stop codon early in the first cytoplasmic exon. The possibility that the 10A and 9A alleles might result in differences in expression and function of KIR2DL4 was explored using mAbs to KIR2DL4. Transfection experiments with cDNA from the 10A and 9A alleles revealed significant membrane expression only with the protein encoded by the 10A allele. Analysis of peripheral blood NK cells demonstrated that only in subjects with at least one 10A allele was cell surface expression of KIR2DL4 detectable,and then only on the minor CD56(bright) NK cell subset. The major CD56(dim) NK cell subset did not cell surface express KIR2DL4 but,interestingly,did so after in vitro culture. Functional analysis using cultured NK cells in redirected lysis assays demonstrated that KIR2DL4 is an activating receptor for NK cells with at least one 10A allele. No significant activity was detected for NK cells generated from subjects homozygous for the 9A allele. These data show that genotype influences cell surface expression and function of KIR2DL4 which may account for reported differences in KIR2DL4 expression and function.
View Publication
产品类型:
产品号#:
15025
15065
产品名:
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
Bartolovic K et al. (JAN 2004)
Blood 103 2 523--9
Inhibitory effect of imatinib on normal progenitor cells in vitro.
Imatinib is a novel tyrosine kinase inhibitor used for the treatment of Philadelphia chromosome-positive leukemias and other malignancies. Side effects are mostly moderate; however,a dose-dependent hematologic toxicity affecting all hematopoietic lineages is observed clinically. The aim of this study was to investigate the effect of imatinib on normal hematopoietic stem and progenitor cells in vitro. A dose-dependent decrease in proliferation potential was found when CD34+ cells were expanded in serum-free medium supplemented with 6 growth factors and imatinib. Functionally,a decrease in colony-forming capacity was observed under increasing doses of imatinib. However,no such effect on more primitive cobblestone area-forming cells was detectable. Both withdrawal of stem cell factor from our expansion cultures or functional inhibition of c-kit led to a similar degree of inhibition of expansion,whereas the effect of imatinib was substantially greater at all dose levels tested. These data suggest a significant inhibitory effect of imatinib on normal CD34+ progenitor (but not stem) cells that is largely independent of c-kit signaling.
View Publication
产品类型:
产品号#:
05150
产品名:
MyeloCult™H5100
Jaatinen T et al. (MAR 2006)
Stem cells (Dayton,Ohio) 24 3 631--41
Global gene expression profile of human cord blood-derived CD133+ cells.
Human cord blood (CB)-derived CD133+ cells carry characteristics of primitive hematopoietic cells and proffer an alternative for CD34+ cells in hematopoietic stem cell (HSC) transplantation. To characterize the CD133+ cell population on a genetic level,a global expression analysis of CD133+ cells was performed using oligonucleotide microarrays. CD133+ cells were purified from four fresh CB units by immunomagnetic selection. All four CD133+ samples showed significant similarity in their gene expression pattern,whereas they differed clearly from the CD133- control samples. In all,690 transcripts were differentially expressed between CD133+ and CD133- cells. Of these,393 were increased and 297 were decreased in CD133+ cells. The highest overexpression was noted in genes associated with metabolism,cellular physiological processes,cell communication,and development. A set of 257 transcripts expressed solely in the CD133+ cell population was identified. Colony-forming unit (CFU) assay was used to detect the clonal progeny of precursors present in the studied cell populations. The results demonstrate that CD133+ cells express primitive markers and possess clonogenic progenitor capacity. This study provides a gene expression profile for human CD133+ cells. It presents a set of genes that may be used to unravel the properties of the CD133+ cell population,assumed to be highly enriched in HSCs.
View Publication
产品类型:
产品号#:
04434
04444
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
Hanai J-I et al. ( 2013)
Cell death & disease 4 e696
ATP citrate lyase knockdown impacts cancer stem cells in vitro.
ATP citrate lyase (ACL) knockdown (KD) causes tumor suppression and induces differentiation. We have previously reported that ACL KD reverses epithelial-mesenchymal transition (EMT) in lung cancer cells. Because EMT is often associated with processes that induce stemness,we hypothesized that ACL KD impacts cancer stem cells. By assessing tumorsphere formation and expression of stem cell markers,we showed this to be the case in A549 cells,which harbor a Ras mutation,and in two other non-small-cell lung cancer cell lines,H1975 and H1650,driven by activating EGFR mutations. Inducible ACL KD had the same effect as stable ACL KD. Similar effects were noted in another well-characterized Ras-induced mammary model system (HMLER). Moreover,treatment with hydroxycitrate phenocopied the effects of ACL KD,suggesting that the enzymatic activity of ACL was critical. Indeed,acetate treatment reversed the ACL KD phenotype. Having previously established that ACL KD impacts signaling through the phosphatidylinositol 3-kinase (PI3K) pathway,not the Ras-mitogen-activated protein kinase (MAPK) pathway,and that EMT can be reversed by PI3K inhibitors,we were surprised to find that stemness in these systems was maintained through Ras-MAPK signaling,and not via PI3K signaling. Snail is a downstream transcription factor impacted by Ras-MAPK signaling and known to promote EMT and stemness. We found that snail expression was reduced by ACL KD. In tumorigenic HMLER cells,ACL overexpression increased snail expression and stemness,both of which were reduced by ACL KD. Furthermore,ACL could not initiate either tumorigenesis or stemness by itself. ACL and snail proteins interacted and ACL expression regulated the transcriptional activity of snail. Finally,ACL KD counteracted stem cell characteristics induced in diverse cell systems driven by activation of pathways outside of Ras-MAPK signaling. Our findings unveil a novel aspect of ACL function,namely its impact on cancer stemness in a broad range of genetically diverse cell types.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Callahan KP et al. (OCT 2014)
Leukemia 28 10 1960--8
Flavaglines target primitive leukemia cells and enhance anti-leukemia drug activity.
Identification of agents that target human leukemia stem cells is an important consideration for the development of new therapies. The present study demonstrates that rocaglamide and silvestrol,closely related natural products from the flavagline class of compounds,are able to preferentially kill functionally defined leukemia stem cells,while sparing normal stem and progenitor cells. In addition to efficacy as single agents,flavaglines sensitize leukemia cells to several anticancer compounds,including front-line chemotherapeutic drugs used to treat leukemia patients. Mechanistic studies indicate that flavaglines strongly inhibit protein synthesis,leading to the reduction of short-lived antiapoptotic proteins. Notably though,treatment with flavaglines,alone or in combination with other drugs,yields a much stronger cytotoxic activity toward leukemia cells than the translational inhibitor temsirolimus. These results indicate that the underlying cell death mechanism of flavaglines is more complex than simply inhibiting general protein translation. Global gene expression profiling and cell biological assays identified Myc inhibition and the disruption of mitochondrial integrity to be features of flavaglines,which we propose contribute to their efficacy in targeting leukemia cells. Taken together,these findings indicate that rocaglamide and silvestrol are distinct from clinically available translational inhibitors and represent promising candidates for the treatment of leukemia.
View Publication
产品类型:
产品号#:
07930
07931
07940
07955
07956
07959
07954
100-1061
07952
产品名:
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
Paulsen BdS et al. (APR 2014)
Schizophrenia Research 154 1-3 30--35
Valproate reverts zinc and potassium imbalance in schizophrenia-derived reprogrammed cells
Schizophrenia has been considered a devastating clinical syndrome rather than a single disease. Nevertheless,the mechanisms behind the onset of schizophrenia have been only partially elucidated. Several studies propose that levels of trace elements are abnormal in schizophrenia; however,conflicting data generated from different biological sources prevent conclusions being drawn. In this work,we used synchrotron radiation X-ray microfluorescence spectroscopy to compare trace element levels in neural progenitor cells (NPCs) derived from two clones of induced pluripotent stem cell lines of a clozapine-resistant schizophrenic patient and two controls. Our data reveal the presence of elevated levels of potassium and zinc in schizophrenic NPCs. Neural cells treated with valproate,an adjunctive medication for schizophrenia,brought potassium and zinc content back to control levels. These results expand the understanding of atomic element imbalance related to schizophrenia and may provide novel insights for the screening of drugs to treat mental disorders. ?? 2014 Elsevier B.V.
View Publication
Doxycycline enhances survival and self-renewal of human pluripotent stem cells.
We here report that doxycycline,an antibacterial agent,exerts dramatic effects on human embryonic stem and induced pluripotent stem cells (hESC/iPSCs) survival and self-renewal. The survival-promoting effect was also manifest in cultures of neural stem cells (NSCs) derived from hESC/iPSCs. These doxycycline effects are not associated with its antibacterial action,but mediated by direct activation of a PI3K-AKT intracellular signal. These findings indicate doxycycline as a useful supplement for stem cell cultures,facilitating their growth and maintenance.
View Publication